

A.C.A. HOWE INTERNATIONAL Mining and Geological Consultants

TECHNICAL REPORT ON THE KANDIOLÉ GOLD PROJECT IN SOUTHWEST MALI

for ROSCAN GOLD CORPORATION

by ACA HOWE INTERNATIONAL LIMITED

Qualified Persons: David Patrick BSc, PhD, FAusIMM Patrick O'Sullivan BSc (Hons), MSc, MAIG Tom Dowrick BSc, CGeol **Report Date:** 6th November 2020 **Effective Date:** 5th July 2020

TABLE OF CONTENTS

1.	SUMMARY	I
1.1.	PROPERTY DESCRIPTION AND OWNERSHIP	I
1.2.	HISTORY	II
1.3.	GEOLOGY	III
1.4.	EXPLORATION STATUS AND MINERALISATION	IV
1.4.1.	SURFACE SAMPLING	V
1.4.2.	SATELLITE IMAGE INTERPRETATION	V
1.4.3.	GEOPHYSICS	V
1.4.4.	DRILLING	VI
1.5.	CONCLUSIONS	XIII
2.	INTRODUCTION	1
3.	RELIANCE ON OTHER EXPERTS	
4.	PROPERTY DESCRIPTION AND LOCATION	4
4.1.	PERMIT DETAILS	
4.1.1.	SEGANDO SOUTH PERMIT	
4.1.2.	KANDIOLÉ WEST PERMIT	
4.1.3.	MOUSSALA NORTH PERMIT	9
4.1.4.	KANDIOLÉ NORTH PERMIT	10
4.1.5.	MANKOUKÉ PERMIT	10
4.1.6.	NIALA PERMIT	11
4.1.7.	DABIA SUD	11
5.	ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY	12
5.1.	ACCESSIBILITY	12
5.2.	CLIMATE, VEGETATION AND FIELD SEASON	12
5.3.	PHYSIOGRAPHY	13
5.4.	LOCAL RESOURCES AND INFRASTRUCTURE	13
6.	HISTORY	14
6.1.	REGIONAL EXPLORATION	14
6.2.	EMERGING GOLD AFRICA (EAG) (1996-1997)	14
6.3.	ASHANTI MALI SA (1997-2000)	16
6.4.	SYSMIN GEOPHYSICAL SURVEY (2000-2004)	19
6.5.	ROBEX RESOURCES INC (2005-2014)	22

6.6.	SEMAKA SARL (2015-2016)	. 25
6.7.	KOMET RESOURCES INC (2017-2020)	. 25
7.	GEOLOGICAL SETTING AND MINERALISATION	. 32
7.1.	REGIONAL GEOLOGY	. 32
7.2.	PERMIT GEOLOGY	. 35
7.3.	MINERALISATION	. 38
7.3.1.	OVERVIEW	. 38
7.3.2.	MANKOUKÉ SOUTH	. 40
7.3.3.	CENTRAL MANKOUKÉ	. 40
7.3.4.	DABIA SUD PERMIT	. 50
7.3.5.	MOUSSALA NORTH	. 51
7.3.6.	ORPAILLAGE SITES	. 56
8.	DEPOSIT TYPES	. 58
9.	EXPLORATION	. 59
9.1.	SURFACE GEOCHEMICAL SURVEYS	. 59
9.2.	SATELLITE IMAGE INTERPRETATION	. 66
9.3.	SYSMIN REGIONAL AIRBORNE GEOPHYSICAL SURVEY	. 70
9.4.	GROUND GEOPHYSICS	. 71
9.4.1.	SURVEY PARAMETERS	. 71
9.4.2.	IP-RESISTIVITY SURVEY - SAGAX INTERPRETATION	. 71
9.4.3.	IP-RESISTIVITY - AUSSIECAN GEOSCIENCE INC (AGI) INTERPRETATION	. 75
9.4.4.	GROUND MAGNETIC SURVEY – PRELIMINARY INTERPRETATION BY GEOKINCERN	. 75
10.	DRILLING	. 76
10.1.	SUMMARY	. 76
10.2.	DRILLING RESULTS	. 77
10.2.1.	MANKOUKÉ SOUTH	. 77
10.2.2.	CENTRAL MANKOUKÉ	. 88
10.2.3.	REGIONAL DRILLING	. 94
10.3.	DRILLING PROCEDURES	. 97
10.3.1.	AIRCORE DRILLING	. 97
10.3.2.	RC DRILLING	. 98
10.3.3.	DIAMOND CORE DRILLING	. 98
10.4.	RECOVERIES	. 98
10.5.	TWINNING	102

11.	SAMPLE PREPARATION, ANALYSES AND SECURITY	106
11.1.	ONSITE PROCEDURES	106
11.2.	LABORATORY PROCEDURES	106
11.2.1.	BUREAU VERITAS	110
11.2.2.	SGS	110
11.2.3.	ALS	110
11.3.	QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC)	111
11.3.1.	CERTIFIED REFERENCE MATERIAL (CRM)	112
11.3.2.	BLANKS	117
11.3.3.	DUPLICATES	117
11.3.4.	RE-ASSAYS	118
11.3.5.	CYANIDE LEACH TESTS – MANKOUKE CENTRAL	123
11.3.6.	REJECT SAMPLES	125
11.4.	SUITABILITY OF THE PROCEDURES	126
12.	DATA VERIFICATION	127
12.1.	ONSITE DATA VERIFICATION	127
12.2.	DESK-BASED DATA VERIFICATION	129
12.3.	SUITABILITY OF THE DATA	131
13.	MINERAL PROCESSING AND METALLURGICAL TESTING	132
13.1.	CENTRAL MANKOUKÉ	132
13.2.	MANKOUKÉ SOUTH	133
14.	MINERAL RESOURCE ESTIMATES	134
15.	MINERAL RESERVE ESTIMATES	134
16.	MINING METHODS	134
17.	RECOVERY METHODS	134
18.	PROJECT INFRASTRUCTURE	134
19.	MARKET STUDIES AND CONTRACTS	134
20.	ENVIRONMENTAL STUDIES, PERMITTING AND SOCIAL OR COMMUNITY IMPACT	134
21.	CAPITAL AND OPERATING COSTS	134
22.	ECONOMIC ANALYSIS	134
23.	ADJACENT PROPERTIES	134
23.1.	IAMGOLD CORPORATION	135
23.2.	OKLO RESOURCES LIMITED	135
24.	OTHER RELEVANT DATA AND INFORMATION	137

25.	INTERPRETATIONS AND CONCLUSIONS	137
26.	RECOMMENDATIONS	139
26.1.	DRILLING	139
26.2.	GEOPHYSICAL SURVEY	140
26.3.	ADDITIONAL RECOMMENDATIONS BY ACA HOWE	140
26.4.	ESTIMATED BUDGET	142
27.	REFERENCES	146
28.	DATE AND SIGNATURE PAGE	148

LIST OF TABLES

TABLE 1.	ROSCAN PERMIT DETAILS	I
TABLE 2.	PIT CONSTRAINED MINERAL RESOURCES (BASE CASE) AS REPORTED BY SGS	III
TABLE 3.	DETAILS OF SURFACE SAMPLING COMPLETED BY ROSCAN	V
TABLE 4.	DETAILS OF DRILLING COMPLETED BY ROSCAN	VI
TABLE 5.	SELECTED SIGNIFICANT INTERSECTIONS AT MANKOUKÉ SOUTH	VII
TABLE 6.	SELECTED SIGNIFICANT INTERSECTIONS AT CENTRAL MANKOUKÉ	XII
TABLE 7.	ESTIMATED BUDGET FOR PHASE 1	XIV
TABLE 8.	ESTIMATED BUDGET FOR PHASE 2	XVI
TABLE 9.	SIGNIFICANT INTERSECTIONS IN TRENCHES AT WALIA (ROBEX, 2007)	24
TABLE 10.	PIT CONSTRAINED MINERAL RESOURCES (BASE CASE) AS REPORTED BY SGS	29
TABLE 11.	DETAILS OF THE KABAYA DATABASE	29
TABLE 12.	SATELLITE IMAGE EXPRESSION OF GEOLOGICAL UNITS	35
TABLE 13.	DETAILS OF SURFACE SAMPLING COMPLETED BY ROSCAN	59
TABLE 14.	SUMMARY OF PROPOSED TARGET AREAS	66
TABLE 15.	DETAILS OF DRILLING COMPLETED BY ROSCAN	76
TABLE 16.	SELECTED SIGNIFICANT INTERSECTIONS AT MANKOUKÉ SOUTH	77
TABLE 17.	SELECTED SIGNIFICANT INTERSECTIONS AT CENTRAL MANKOUKÉ	89
TABLE 18.	DETAILS OF MINERALISED BRECCIA INTERSECTION IN DDHMAN-19-04	93
TABLE 19.	SELECTED SIGNIFICANT INTERSECTIONS IN REGIONAL DRILLING	96
TABLE 20.	AC RECOVERIES	100
TABLE 21.	RC RECOVERIES	101
TABLE 22.	DETAILS OF DRILL HOLES COMPARED IN TWIN DRILLING ANALYSIS	102
TABLE 23.	LABORATORY ANALYSIS OF SAMPLES IN 2020 (INCLUDING QA/QC SAMPLES)	106
TABLE 24.	2018-19 SAMPLE TYPES AND PERCENTAGE QA/QC SAMPLES	111
TABLE 25.	2020 SAMPLE TYPES AND PERCENTAGE QA/QC SAMPLES	111
TABLE 26.	SUMMARY OF QA/QC SAMPLE RESULTS	112
TABLE 27.	CRM >3 STANDARD DEVIATIONS FROM THE MEAN IN THE 2018-19 DRILLING PROGRAMME	113
TABLE 28.	DETAILS OF SAMPLES RE-ASSAYED BY ROSCAN	118
TABLE 29.	COMPARISON OF DUPLICATE CORE SAMPLE ASSAYS	119
TABLE 30.	COMPARISON OF DUPLICATE AC SAMPLE ASSAYS	119
TABLE 31.	COMPARISON OF RE-ASSAYS WITH ORIGINAL GRADES ABOVE 0.5 G/T AU	120
TABLE 32.	ACA HOWE DRILL CORE VERIFICATION SAMPLES	127

TABLE 33.	ACA HOWE AIRCORE VERIFICATION SAMPLES	129
TABLE 34.	COMPARISON OF ASSAY CERITIFCATES TO ASSAY GRADES IN ROSCAN DATABASE	129
TABLE 35.	SUMMARY OF ERRORS IDENTIFIED IN 2018-19 DRILL HOLE DATABASE	131
TABLE 36.	SUMMARY OF ERRORS IDENTIFIED IN 2020 DRILL HOLE DATABASE	131
TABLE 37.	RESULTS OF CYANIDE LEACH TESTS FROM CENTRAL MANKOUKÉ	132
TABLE 38.	RESULTS OF CYANIDE LEACH TESTS FROM MANKOUKÉ SOUTH	133
TABLE 39.	TOTAL INDICATED AND INFERRED RESOURCES AT THE ZONE 1B, TAYA-KO AND DIAKHA DEPOSITS, DATED 31 st DECEMBER 2018	135
TABLE 40.	DRILLING PLANNED BY ROSCAN	139
TABLE 41.	ESTIMATED BUDGET FOR PHASE 1	142
TABLE 42.	ESTIMATED BUDGET FOR PHASE 2	144

LIST OF FIGURES

FIGURE 1.	LOCATION OF THE KANDIOLÉ PROJECT IN SOUTHWEST MALI
FIGURE 2.	ROSCAN'S PERMITS IN SOUTHWEST MALI AND EXISTING MINES / ADVANCED PROJECTS / EXPLORATION PROJECTS
FIGURE 3.	REGIONAL SOIL SURVEY BY BRGM AND DNGM ON LITHOSTRUCTURAL INTERPRETATION FROM SATELLITE IMAGE DATA (MAY 2019)
FIGURE 4.	ROSCAN PERMITS ON SOIL SAMPLE SURVEY COMPLETED BY ASHANTI EXPLORATION MALI (2002) 17
FIGURE 5.	ROSCAN PERMITS ON SOIL SAMPLE SURVEY COMPLETED BY ASHANTI MALI, 2002
FIGURE 6.	COMPILATION OF DATA FROM EAG AND ASHANTI MALI
FIGURE 7.	KANDIOLÉ PROJECT OUTLINE ON REGIONAL AIRBORNE MAGNETICS (VERTICAL GRADIENT)
FIGURE 8.	SOIL GEOCHEMISTRY COMPILATION – ASHANTI MALI AND ROBEX RESOURCES 23
FIGURE 9.	DABIA SUD GRAVITY SURVEY SHOWING BOUGER FIRST VERTICAL DERIVATIVE GRAVITY IMAGE
FIGURE 10.	DABIA SUD INTERPRETED GEOLOGY BASED ON THE GRAVITY SURVEY
FIGURE 11.	DRILL HOLES AND TRENCHES COMPLETED AT THE KABAYA DEPOSIT BY ROBEX AND KOMET
FIGURE 12.	PLAN VIEW OF THE BLOCK MODEL USED IN THE HISTORICAL RESOURCE ESTIMATE AND A TYPICAL CROSS SECTION
FIGURE 13.	GEOLOGY OF WEST AFRICA AND MAJOR GOLD DEPOSITS
FIGURE 14.	ANOMALOUS ASSAYS FROM ROSCAN TERMITE MOUND SAMPLING ON AIRBORNE MAGNETICS
FIGURE 15.	LITHOSTRUCTURAL INTERPRETATION FROM SATELLITE IMAGE DATA
FIGURE 16.	STRUCTURAL AND GEOLOGICAL INTERPRETATION OF SYSMIN DATA WITH DRILLING IN THE MANKOUKÉ PERMIT
FIGURE 17.	ROSCAN INTERPRETATION (JULY 2020) ON SECTION 1375750N (LOOKING NORTH) WITH MINERALISATION BOTH IN SHALLOW SAPROLITE AND AT DEPTH
FIGURE 18.	ROSCAN INTERPRETATION (AUGUST 2019) ON SECTION 1380800N (LOOKING NORTH) WITH MINERALISATION PREDOMINANTLY IN SAPROLITE
FIGURE 19.	ROSCAN INTERPRETATION (AUGUST 2019) ON SECTION 1380506N (LOOKING NORTH) WITH MINERALISATION BOTH IN SHALLOW SAPROLITE AND AT DEPTH 43
FIGURE 20.	GROUND GEOPHYSICS SHOWING ANALYTIC SIGNAL RESULTS FOR CENTRAL MANKOUKÉ AND MANKOUKÉ SOUTH
FIGURE 21.	CONTOUR MAP SHOWING THE RESULTS OF ROSCAN'S SAMPLING IN THE MANKOUKÉ PERMIT
FIGURE 22.	CROSS SECTION SHOWING A TYPICAL SECONDARY DISPERSION WITHIN THE SAPROLITE ZONE
FIGURE 23.	SECTION LINE 1380550 N WITH STILL UNCONSTRAINED MINERALISATION WITHIN DEEPER SAPROLITE

FIGURE 24	. OXIDISED SULPHIDES ON SHALE PARTINGS ALONG THE SELVAGES OF THIN QUARTZ VEINS	. 49
FIGURE 25	. LOOKING NORTH TO GOSSAN-CAPPED HILL FROM A PREPARED DRILL LINE (1398500N). ORPAILLEUR WORKINGS AGAIN FOCUSSED TO WEST (LEFT) OF RIDGELINE	. 51
FIGURE 26	. SILICIFIED GOSSAN OUTCROP DISPLAYING SADDLE REEF TYPE CHARACTERISTICS	. 52
FIGURE 27	. MINERALISATION ON SECTION 1398305N TO THE WEST OF THE RIDGELINE AT SITE DE BILALI	. 53
FIGURE 28	MINERALISATION ON SECTION 1398350N TO THE WEST OF THE RIDGELINE AT SITE DE BILALI	. 54
FIGURE 29	. SHALLOW HIGH GRADE MINERALISATION CLOSE TO THE ORPAILLEUR WORKINGS OF SITE DE WALIYA	. 55
FIGURE 30	NEAR-SURFACE EXPLOITATION OF SOFT SAPROLITE BENEATH THE LATERITE COVER (LEFT) AND DEEPER WORKINGS OF STEEP PRIMARY STRUCTURES TO AROUND 20 M (RIGHT) – BOTH AT KOUROUKAIDA	. 56
FIGURE 31	. LOCATION OF THE CENTRAL MANKOUKÉ ZONE AND ORPAILLAGE SITES IN THE KANDIOLÉ PROJECT	. 57
FIGURE 32	. ROSCAN SOIL SAMPLE ASSAY RESULTS ON INTERPRETED FAULTS FROM ACA HOWE'S SATELLITE IMAGE INTERPRETATION	. 60
FIGURE 33	. ROSCAN TERMITE MOUND SAMPLE ASSAY RESULTS ON INTERPRETED FAULTS FROM ACA HOWE'S SATELLITE IMAGE INTERPRETATION	. 61
FIGURE 34	. ROSCAN SOIL SAMPLE ASSAYS (SOUTHERN AREA) ON INTERPRETED FAULTS FROM ACA HOWE'S SATELLITE IMAGE INTERPRETATION	. 63
FIGURE 35	ROSCAN SOIL SAMPLE ASSAY RESULTS IN THE NORTH OF THE MOUSSALA NORTH PERMIT AND INTERPRETED FAULTS FROM ACA HOWE'S SATELLITE IMAGE INTERPRETATION	. 64
FIGURE 36	. ROSCAN GRAB SAMPLE ASSAY RESULTS ON INTERPRETED FAULTS FROM ACA HOWE'S SATELLITE IMAGE INTERPRETATION AND ORPAILLAGE SITES	. 65
FIGURE 37	LITHOSTRUCTURAL INTERPRETATION WITH TARGET AREAS AND DEPOSITS IN THE REGION	. 67
FIGURE 38	LITHOSTRUCTURAL INTERPRETATION WITH TARGET AREAS AND DEPOSITS IN THE REGION, ON SENTINEL IMAGE DATA	. 68
FIGURE 39	DETAILS OF VERY HIGH RESOLUTION DATA PURCHASED BY ROSCAN	. 69
FIGURE 40	. GROUND GEOPHYSICS (CHARGEABILITY) SHOWING STRUCTURAL INTERPRETATION BY SAGAX, 2020	. 72
FIGURE 41	. CROSS SECTION SHOWING CHARGEABILITY DATA FOR SECTION 1375850 N AT MANKOUKÉ SOUTH	. 73
FIGURE 42	. CROSS SECTION SHOWING CHARGEABILITY DATA FOR SECTION 1380550 N AT CENTRAL MANKOUKÉ	. 74
FIGURE 43	. AC DRILLING IN THE MANKOUKÉ SOUTH ZONE	. 82
FIGURE 44	. DIAMOND CORE DRILLING IN THE MANKOUKÉ SOUTH ZONE	. 83
FIGURE 45	RC DRILLING IN THE MANKOUKÉ SOUTH ZONE	. 84

FIGURE 46	5. ROSCAN AIRCORE DRILL HOLE LOCATIONS IN THE MANKOUKÉ, SOUTHERN NIALA AND SOUTHERN KANDIOLÉ NORTH PERMITS ON SATELLITE IMAGE INTERPRETATION	85
FIGURE 47	. ROSCAN DD LOCATIONS IN THE MANKOUKÉ PERMIT ON SATELLITE IMAGE INTERPRETATION	86
FIGURE 48	ROSCAN RC DRILL HOLE LOCATIONS IN THE MANKOUKÉ PERMIT ON SATELLITE IMAGE INTERPRETATION	
FIGURE 49	PHOTO SHOWING THE END OF THE MINERALISED ZONE IN DDMAN20-40	88
FIGURE 50	AC DRILLING IN THE CENTRAL MANKOUKÉ ZONE	90
FIGURE 51	DIAMOND CORE DRILLING IN THE CENTRAL MANKOUKÉ ZONE	91
FIGURE 52	RC DRILLING IN THE CENTRAL MANKOUKÉ ZONE	92
FIGURE 53	PHOTO SHOWING THE END OF THE MINERALISED ZONE IN DDMAN-19-04	94
FIGURE 54	. ROSCAN AIRCORE DRILL HOLES IN THE SEGUNDO SOUTH, KANDIOLÉ NORTH AND MOUSSALA NORTH PERMITS ON SATELLITE IMAGE INTERPRETATION	95
FIGURE 55	COMPARISON OF RECOVERIES IN AC AND RC DRILLING	99
FIGURE 56	. COMPARISON OF AC DRILLING RECOVERIES BY GRADE AND WEATHERING HORIZON	99
FIGURE 57	COMPARISON OF RC RECOVERIES BY GRADE AND WEATHERING HORIZON	.00
FIGURE 58	COMPARISON OF ASSAYS FROM ACMAN20-312 AND DDMAN20-26 (COLLARS 1 M APART)	.03
FIGURE 59	COMPARISON OF ASSAYS FROM ACMAN20-310 AND DDMAN20-29 (COLLARS 4.1 M APART) 1	.04
FIGURE 60	. COMPARISON OF ASSAYS FROM ACMAN20-308 AND DDMAN20-33 (COLLARS 4.2 M APART)	.04
FIGURE 61	. COMPARISON OF ASSAYS FROM ACMAN20-319 AND DDMAN20-24 (COLLARS 1 M APART) 1	.05
FIGURE 62	. COMPARISON OF ASSAYS FROM RCMAN20-04 AND DDMAN20-41 (COLLARS 1 M APART)	.05
FIGURE 63	. CROSS SECTION 1375900MN SHOWING EXAMPLES OF TWIN DRILL HOLE DATA IN THE MANKOUKÉ SOUTH ZONE1	.07
FIGURE 64	. CROSS SECTION 1376000MN SHOWING EXAMPLES OF TWIN DRILL HOLE DATA IN THE MANKOUKÉ SOUTH ZONE 1	.08
FIGURE 65	S. CROSS SECTION 1375750MN SHOWING EXAMPLES OF TWIN DRILL HOLE DATA IN THE MANKOUKÉ SOUTH ZONE 1	.09
FIGURE 66	CHART SHOWING THE RESULTS OF ANALYSIS OF CRM SAMPLE OXE150	14
FIGURE 67	CHART SHOWING THE RESULTS OF ANALYSIS OF CRM SAMPLE SJ95 1	14
FIGURE 68	CHART SHOWING THE RESULTS OF ANALYSIS OF CRM SAMPLE OXL135 1	15
FIGURE 69	CHART SHOWING THE RESULTS OF ANALYSIS OF CRM SAMPLE OXJ137 1	15
FIGURE 70	CHART SHOWING THE RESULTS OF ANALYSIS OF CRM SAMPLE OXG123 1	16
FIGURE 71	. CHART SHOWING THE RESULTS OF ANALYSIS OF CRM SAMPLE SG84 1	16

FIGURE 72. CHART SHOWING THE RESULTS OF ANALYSIS OF AC SAMPLE DUPLICATES (AU G/T) 1	17
FIGURE 73. CHART SHOWING THE RESULTS OF ANALYSIS OF RC SAMPLE DUPLICATES (AU G/T)1	18
FIGURE 74. CHART SHOWING THE RESULTS OF AC PULP AND REJECT RE-ASSAYING 1	21
FIGURE 75. CHART SHOWING THE RESULTS OF DIAMOND DRILL HOLE PULP, REJECT AND QUARTER CORE RE-ASSAYING 1	21
FIGURE 76. CHART SHOWING THE RESULTS OF RC PULP AND REJECT RE-ASSAYING 1	22
FIGURE 77. CHART SHOWING THE RESULTS OF RC-DD PULP AND REJECT RE-ASSAYING 1	22
FIGURE 78. CHART SHOWING A COMPARISON OF SAMPLES ANALYSED BY CYANIDE LEACH 1	23
FIGURE 79. CHART SHOWING A COMPARISON OF SAMPLES ANALYSED BY FIRE ASSAY AND CYANIDE LEACH	24
FIGURE 80. CHART SHOWING A COMPARISON OF SAMPLES ANALYSED BY FIRE ASSAY AND CYANIDE LEACH ('D' SAMPLES) 1	24
FIGURE 81. CHART SHOWING A COMPARISON OF SAMPLES ANALYSED BY FIRE ASSAY AND CYANIDE LEACH 1	125
FIGURE 82. CHART SHOWING A COMPARISON OF ANALYSIS OF REJECT AND ORIGINAL SAMPLES	26
FIGURE 83. DDHMAN-19-03: DARK BRECCIA ZONE TO 61.1 M DEPTH FOLLOWED BY PALE BLEACHED SAPROLITE OR KAOLINITE CLAYS1	28
FIGURE 84. DDHMAN-19-04: QUARTZ VEINLETS FROM 80.1 M PRECEDED BY DARKER, MORE FRIABLE, BRECCIA MATERIAL (LOWER PART OF PHOTO) 1	28
FIGURE 85. ROSCAN PERMITS AND ADJACENT PROPERTIES SHOWING POSSIBLE TRENDS INTERPRETED FROM SATELLITE IMAGE DATA, GEOPHYSICS AND	
GEOCHEMISTRY 1	36

LIST OF APPENDICES

APPENDIX 1.	COORDINATES OF PERMITS	151
APPENDIX 2.	AC DRILL HOLE COLLAR DETAILS	154
APPENDIX 3.	RC DRILL HOLE COLLAR DETAILS	192
APPENDIX 4.	DIAMOND DRILL HOLE AND RC-DD COLLAR DETAILS	194
APPENDIX 5.	SIGNIFICANT INTERSECTIONS IN AC DRILLING	197
APPENDIX 6.	SIGNIFICANT INTERSECTIONS IN RC DRILLING	209
APPENDIX 7.	SIGNIFICANT INTERSECTIONS IN DIAMOND CORE DRILLING	213

1. SUMMARY

A.C.A. Howe International Limited (ACA Howe) has prepared this NI 43-101 compliant technical report on the Kandiolé Project at the request of Roscan Gold Corporation (Roscan). Roscan is a Canadian-based exploration company focused on gold exploration in Mali, West Africa. The purpose of the report is to provide a summary of material scientific and technical information regarding exploration activities on the Kandiolé Project.

The Kandiolé Project is strategically located in the Kéniéba region of Mali where significant gold deposits have been identified. These deposits are associated with strong regional structures and Birimian lithologies that also occur within Roscan's permits. Roscan has discovered significant mineralised zones at Mankouké South and Central Mankouké. In addition, Roscan acquired the Dabia Sud permit in July 2020, which includes the Kabaya deposit. These mineralised zones are thought to be part of a regional structural zone, extending to the north-northeast from Siribaya (IAMGOLD Corporation) in the south, through Mankouké South, Central Mankouké and Kabaya, to the Seko Project (Oklo Resource Limited) to the north.

1.1. PROPERTY DESCRIPTION AND OWNERSHIP

The Kandiolé Project is located in the Kéniéba area of Southwest Mali, approximately 400 km west of Bamako and 5 km southwest of Dabia village. A paved highway (Route Nationale 24 – RN24) provides access from Bamako to Dabia village in approximately seven hours, and from there the Kandiolé Project is accessible by various bushtracks and gravel roads passable to 4WD vehicles.

The Kandiolé Project is centred at approximately 262000mE, 1389000mN (WGS84, UTM Zone 29 N). It comprises seven contiguous exploration permits totalling 288.8 km² (Table 1), including the 100% owned Dabia Sud permit, recently acquired from Komet Resources (July 2020). Roscan has also signed sole, exclusive and irrevocable option agreements with Touba Mining SARL, SOLF SARL, Minex SARL and KL Mining / KA Gold Mining (Table 1), enabling Roscan to acquire a 100% interest in the other six permits of the Kandiolé Project. In addition to the option agreement with Roscan, Touba Mining SARL is Roscan's strategic local partner, which provides exploration services, including personnel and equipment, to Roscan.

TABLE 1. ROSCAN PERMIT DETAILS					
Permit	Area (km ²)	Option Agreement	Effective Date	Option Exercise (yrs.)	
Kandiolé North	40	Touba Mining	25/05/2018	3	
Kandiolé West	25	Touba Mining	25/05/2018	3	
Niala	75	SOLF SARL	27/04/2018	3	
Mankouké	16.8	Minex SARL	22/06/2018	3	
Moussala North	32	KL Mining/ KA Gold Mining	31/03/2018	3	
Segando South	65	KL Mining/ KA Gold Mining	31/03/2018	3	
Dabia Sud	35	Owned by Komet Mali SARL*	03/07/2020	N/A	
Total Area	288.8				

*Komet Mali SARL is 100% owned by Roscan.

The region has distinct wet and dry seasons, from June to October and October to May respectively. Most of the project area is accessible all year, though there can be minor access problems during the rainy season. A team of experienced local geologists and assistant geologists work for Roscan and equipment is available in Dabia village and Kéniéba, 27 km to the northwest along RN24. In addition, Kéniéba has modern telephone communications, government offices, wholesalers and a small regional airport.

ii

Roscan's field office is in the town of Diabarou, 6.5 km southeast of Dabia by laterite road. The camp has a diesel generator, a covered core logging area and buildings that are used for the storage of samples. A 2 km long, private lateritic airstrip lies around 2.5 km northeast of Diabarou and may be used by emergency services.

1.2. HISTORY

Parts of the project, particularly the Dabia Sud permit, have been explored by previous owners. The most significant work completed is as follows:

Ashanti Mali SA (1997-2000)

Ashanti Mali conducted soil sampling which included parts of the Moussala North and Dabia Sud permits, resulting in the identification of seven target areas for follow-up. One of the target areas is the Walia prospect which Roscan plans to explore as part of its on-going programme.

Robex Resources Inc (2005-2014)

Robex Resources completed soil sampling over a wider area, including the whole of the Moussala North and Dabia Sud permits. Importantly, the survey identified an anomalous zone over the area now known as the Kabaya deposit. In addition, the Dissé prospect was discovered around 5 km to the north of Kabaya. Robex completed trenching at Walia and Kabaya which returned some encouraging results. This was followed up with aircore (AC) drilling at Kabaya during 2013 and 2014.

Robex also commissioned a gravity survey at Kabaya which indicates that the distribution of mineralisation appears to be associated with concave structures splaying off the regional north-south trend (Haines Surveys, 2014).

Komet Resources Inc (2017-2020)

During 2017 and 2018 Komet Resources drilled 91 RC holes for 7,272 m in the Kabaya area. In 2019, a mineral resource estimate (Table 2) was announced in Komet's news releases and the document "Dabia Sud Property, Kabaya Resource NI 43-101 Technical Report, Mali" by SGS Geological Services (SGS) (Qualified Person: Yann Camus) was posted on their website and filed on SEDAR. The effective date for the historical mineral resource estimate was 7th January 2019.

TABLE 2.PIT	CONSTRAINED MINER REPORTED		ASE CASE) AS
Classification	Tonnage (Mt)	Au (g/t)	Ounces (koz)
Indicated	3.17	1.03	105
Inferred	0.96	1.14	35

* The historical estimate was estimated using a cut-off grade of 0.4 g/t Au and a bulk density of 1.7 t/m³.

A Qualified Person has not undertaken sufficient work on behalf of Roscan to enable the Company to classify this historical estimate as a current mineral resource. ACA Howe has made recommendations for the verification of the data in Section 26.

1.3. GEOLOGY

The Roscan permits are located in the southeastern portion of the Kéniéba inlier, 25 km east of the major Senegal-Mali Shear Zone (SMSZ) and within a Birimian greenstone belt which hosts numerous gold deposits in the region. The major gold deposits of Yalea, Gounkoto, Tabakoto, Segala and Fekola are all related to northeast-southwest subsidiary structures splaying off the main SMSZ. Magnetic gradient data from the SYSMIN regional airborne geophysical survey shows pronounced northeast-southwest trending structures on the eastern side of the SMSZ, continuing through the Kandiolé Project. Up to four periods of laterisation, dating from the Cretaceous to the Neogene have been recognised across the region.

A satellite image interpretation completed by ACA Howe in 2019 identified evidence of Birimian lithologies in all permits of the Kandiolé Project. Extensive areas of rejuvenated laterite were interpreted with initial formation in the Upper Proterozoic and further laterisation in the Post Mesozoic. To the west, a granite-gneiss intrusion bounded on the eastern side by a northwest trending fault was interpreted. Detailed interpretation of faults and fractures was also completed, with the main directions being north-northeast, northwest, east-northeast and east-west. Sinusoidal swings are observed in some of the faults, which are mimicked to a certain extent in the foliation trends, and these appear to indicate dextral lateral movement.

The following geological history of the region has been developed to understand the occurrence of gold mineralisation in the area. Beginning with the oldest events, the key features appear to be as follows:

- **Pre-Birimian:** Basement gneisses have been located in the western permits of the Kandiolé Project.
- Lower Proterozoic: Deposition of clastic, pelitic, carbonate and volcano-sedimentary units.
- **Proterozoic (2,000-1,800 Ma Eburnean):** Burial and metamorphism (green schist facies) of sediments during the Eburnean orogeny to form quartzites/schists/phyllites/greywacke and marbles etc. Repeated syn- and post-orogenic gold mineralisation events.

- **Upper Proterozoic:** Uplift erosion and peneplanation of Birimian rocks with possible formation of a crusted surface similar to modern laterite. Physical and chemical weathering of rocks with the migration of mineralisation through the weathered zone.
- Upper Proterozoic to Carboniferous: Deposition of clastic sediments (mainly sandstones) of the Taoudeni Basin.
- **Permian to Jurassic:** Faulting and fracturing or rejuvenation of earlier structures and intrusion of dolerite dykes, sills and stocks etc. Potential for further reactivation of older mineralised faults and shears plus the intrusion of unmineralised dykes, sills and stocks. An area of outcropping dolerite sills reportedly of Mesozoic age is located in the Niala permit.
- **Post Mesozoic:** Uplift and erosion of the Taoudeni sandstones and eventual rejuvenation of the pre-Taoudeni surface. (The timing of this erosional phase is unknown as there are no recent sediments or alluvium in the study area, but there are Cenozoic sediments elsewhere in Mali).
- Quaternary: Development of modern laterite. Further potential for the remobilisation of mineralisation through the weathered zone.

1.4. EXPLORATION STATUS AND MINERALISATION

Exploration work performed by Roscan includes surface geochemical surveys (soil, termite mound and grab sampling), satellite image interpretation, ground IP / resistivity and magnetic surveys, and aircore (AC), reverse circulation (RC) and diamond core drilling (DD).

This exploration work has led to the discovery of mineralised zones at Mankouké South and Central Mankouké, as well as significant intersections in AC drilling in the Kandiolé North, Kandiolé West, Moussala North and Niala permits.

In addition, the Kabaya deposit and Walia and Dissé prospects are located in the Dabia Sud permit which Roscan acquired in July 2020.

Regional airborne magnetic data highlights the prominent north-northeast/south-southwest trending magnetic lineament which appears to be the dominant structure controlling mineralisation from Siribaya (IAMGOLD) in the south, progressing through Mankouké South, Central Mankouké, Kabaya and on through Oklo Resources' Sory and Seko deposits in the north.

Gold mineralisation based on drilling by Roscan to date occurs predominantly within saprolite in the oxide zone, and most commonly as limonite-bearing, matrix-supported polymictic breccias with a high argillaceous content. Any unaltered polymictic breccias intersected during drilling are not mineralised. It is suggested that the breccia zones provided high-porosity zones which enabled the ingress of auriferous fluids.

1.4.1. SURFACE SAMPLING

TABLE 3. DETAII	LS OF SURFACE SAMPL ROSCAN	ING COMPLETED BY
Survey	Area Covered (km ²)	Number of Samples
Soil sampling	52	5,906
Termite mound sampling	220	13,748*
Grab sampling	N/A	233

A summary of the surface sampling completed by Roscan is shown in Table 3.

*Results for 640 termite samples from the Niala permit had not been received by the effective date of the report.

The correlation between the initial soil and termite sampling results led Roscan to use termite sampling only for the subsequent geochemical surveys. The strongest termite and gold-in-soil anomalies within the Mankouké permit display a generally northerly trend, which Roscan has identified as being consistent with the larger-scale regional trends visible in the airborne magnetic gradient images.

Further termite sampling completed in the rest of the Kandiolé Project in 2020 identified significant anomalism in the south of the Niala permit, in an area with multiple faults interpreted from satellite image data along north-northeast, northwest and east-northeast trends. Further to this, two clusters of anomalous results in the northeast of the Niala permit warrant follow-up exploration.

1.4.2. SATELLITE IMAGE INTERPRETATION

In May 2019, satellite image interpretation was completed by ACA Howe covering the Kandiolé Project and surrounding area. Twelve targets were selected by ACA Howe as possible locations for ground follow-up based on coincident structures and strong clay-iron alteration. Subsequent termite sampling has identified coincident anomalism within some of the target areas.

1.4.3. GEOPHYSICS

In 2020 Roscan commissioned the following geophysical surveys and/or interpretation:

- Re-interpretation of the regional SYSMIN airborne magnetic survey for the Mankouké permit by Geokincern Ltd. As interpreted by ACA Howe after study of drill core, core photos, drill logs and cross sections, Geokincern's geophysical processing indicates that lithological boundaries may have an influence on the distribution of gold mineralisation. In addition, folded sequences suggest the potential for repetition of mineralised zones.
- Ground IP / resistivity and magnetometry survey at Central Mankouké and Mankouké South by SAGAX AFRIQUE SA. SAGAX produced a number of interpretations for the two grids, with intersecting structures at the southern end of Central Mankouké and a northnorthwesterly trend at Mankouké South.

- Ground IP / resistivity interpretation at Central Mankouké and Mankouké South by Aussiecan Geoscience Inc. It was noted by Aussiecan Geoscience Inc that the survey may only have penetrated to shallow depths due to the presence of clay so no significant conclusions were made.
- Ground magnetometry interpretation at Central Mankouké and Mankouké South by Geokincern Ltd. Preliminary interpretation maps were provided to ACA Howe but with no accompanying report or conclusions.

1.4.4. DRILLING

Details of drilling completed by Roscan is shown in Table 4.

TABLE	4. DETAILS	OF DRILLING COMPLET	ED BY ROSCAN
Drill Hole Type	Total Holes	Total Meterage	Total Samples (Excluding QA/QC)
2018 – 2019 Drill	ing		
AC	610	28,217	14,189
RC	3	370	370
RC-DD	8	914 (380 RC, 534 DD)	914 (380 RC, 534 DD)
DD	11	1,203	1,180
2020 Drilling			
AC	938	39,484	19,431 (2,684 pending)
RC	12	1,207	1,207
RC-DD	2	421.6 (190 RC, 231.6 DD)	414 (190 RC, 224 DD)
DD	30	5,052	4,916
Total	1,614	76,868.6	42,621

Mankouké South

Roscan intersected wide drilled thicknesses of mineralisation in initial AC drilling at Mankouké South in 2019. Roscan has followed up on this with diamond drilling and further AC drilling in 2020 and has identified wide mineralised zones (drilled thickness) with significant grades, in an area with a strike length of around 600 m and depths down to 120 m below surface.

The drilling has delineated steeply-dipping, stretched funnel-shaped shoots, with the long axis parallel to the regional structural trend. Grades tend to be highest towards the centre of the funnel structures with both grades and thicknesses petering out along the long axes. Recent drilling demonstrates how mineralisation either bottoms out or ends abruptly in thicker dark grey to black

pelitic successions to the east of Mankouké South, with some gold remobilisation apparent in the shallower saprolite levels.

AC drilling completed around 400 m to the west-northwest of Mankouké South suggests that the mineralisation may have been displaced by a west-northwest trending fault shown in the regional SYSMIN geophysical survey. This requires further testing through drilling.

Due to the number of significant intersections, only drilled intervals over 10 m in length and at least 2 g/t Au are shown in Table 5. Full details of significant intersections drilled by Roscan (of at least 1 m and 0.5 g/t Au), including any higher-grade intervals within the overall intersection, are shown in Appendices 5 to 7. The significant intersections described in this section and shown in Appendices 5 to 7 show drilled rather than true thicknesses as there is insufficient data to determine true thicknesses for the majority of the drilling.

Hole ID	Hole Type	From	То	Drilled Interval (m)	Au (g/t)
ACMan-19-167	AC	4.0	20.0	16.0	4.50
Including		6	8	2	23.00
Including		16	18	2	5.40
ACMan-19-167	AC	24.0	50.0	26.0	5.86
Including		28	30	2	10.20
Including		34	44	10	9.44
ACMan-19-168	AC	4.0	14.0	10.0	3.0
Including		10	12	2	10.60
ACMan-19-168	AC	20.0	50.0	30.0	3.71
Including		26	32	6	6.73
Including		46	50	4	9.19
ACMan-19-169	AC	38.0	50.0	12.0	3.23
Including		38	42	4	5.92
ACMan-19-170	AC	10.0	36.0	26.0	2.76
Including		10	12	2	6.76
Including		22	26	4	8.74
ACMAN20-288	AC	2.0	50.0	48.0	3.71
Including		18.0	19.0	1.0	5.62
Including		27.0	50.0	23.0	6.61
Including		30.0	40.0	10.0	8.15
Including		44.0	49.0	5.0	10.49
ACMAN20-289	AC	0.0	49.0	49.0	2.41
Including		8.0	13.0	5.0	10.08
Including		8.0	11.0	3.0	15.11
ACMAN20-290	AC	0.0	15.0	15.0	3.63

Г

				SECTIONS AT	T MANKOUKÉ T 2 G/T AU)
Hole ID	Hole Type	From	То	Drilled Interval (m)	Au (g/t)
Including		10.0	14.0	4.0	10.58
Including		12.0	13.0	1.0	34.60
ACMAN20-298	AC	24.0	36.0	12.0	3.98
Including		33.0	34.0	1.0	8.52
ACMAN20-306	AC	33.0	47.0	14.0	2.76
Including		35.0	37.0	2.0	11.49
Including		35.0	36.0	1.0	18.00
ACMAN20-312	AC	6.0	27.0	21.0	14.95
Including		8.0	25.0	17.0	18.23
Including		8.0	24.0	16.0	19.07
ACMAN20-314	AC	22.0	42.0	20.0	12.12
Including		26.0	34.0	8.0	27.94
Including		26.0	29.0	3.0	70.83
ACMAN20-319	AC	11.0	48.0	37.0	3.27
Including		22.0	41.0	19.0	5.12
Including		22.0	26.0	4.0	9.35
Including		33.0	37.0	4.0	7.68
ACMAN20-320	AC	16.0	33.0	17.0	2.41
Including		18.0	19.0	1.0	2.74
Including		29.0	32.0	3.0	7.46
Including		30.0	32.0	2.0	9.00
ACMAN20-327	AC	38.0	50.0	12.0	2.49
Including		44.0	50.0	6.0	4.42
Including		44.0	45.0	1.0	12.40
ACMAN20-467	AC	8.0	28.0	20.0	3.0
Including		18.0	28.0	10.0	4.38
Including		22.0	26.0	4.0	5.63
RCMAN20-05	RC	38.0	54.0	16.0	2.08
Including		41.0	44.0	3.0	4.88
Including		41.0	43.0	2.0	5.94
Including		48.0	50.0	2.0	4.96
Including		49.0	50.0	1.0	5.86
RCMAN20-10	RC	119.0	134.0	15.0	2.67
Including		120.0	124.0	4.0	6.92
Including		122.0	124.0	2.0	9.86
RCMAN20-12	RC	96.0	106.0	10.0	2.03
Including		101.0	105.0	4.0	4.03
Including		103.0	104.0	1.0	5.65

Hole ID	Hole Type	From	То	Drilled Interval (m)	Au (g/t)
DDMAN20-20	DD	15.7	62.7	47.0	4.30
Including		27.7	47.7	20.0	8.81
Including		27.7	30.7	3.0	23.30
Including		38.7	45.7	7.0	12.36
DDMAN20-21	DD	62.3	78.3	16.0	6.26
Including		64.3	77.3	13.0	7.53
Including		66.3	77.3	11.0	8.49
DDMAN20-21	DD	81.3	102.3	21.0	3.18
Including		87.3	101.3	14.0	4.19
Including		89.3	94.3	5.0	5.54
Including		99.3	100.3	1.0	8.76
DDMAN20-24	DD	19.2	44.2	25.0	3.66
Including		19.2	41.2	22.0	4.09
Including		19.2	27.2	8.0	5.92
Including		35.2	36.2	1.0	7.34
DDMAN20-26	DD	20.2	32.2	12.0	10.21
Including		24.2	29.2	5.0	23.73
Including		24.2	27.2	3.0	36.51
DDMAN20-27	DD	29.2	86.2	57.0	3.66
Including		29.2	52.2	23.0	7.00
Including		29.2	44.2	15.0	9.19
Including		56.2	59.2	3.0	4.44
Including		57.2	58.2	1.0	6.85
Including		79.2	80.2	1.0	4.82
DDMAN20-29	DD	39.2	101.2	62.0	4.84
Including		47.2	67.2	20.0	6.34
Including		48.2	49.2	1.0	5.12
Including		55.2	62.2	7.0	12.71
Including		73.2	88.2	15.0	9.12
Including		73.2	86.2	13.0	10.00
DDMAN20-29	DD	110.2	141.2	31.0	2.61
Including		112.2	134.7	22.5	3.32
Including		112.2	117.2	5.0	5.43
Including		127.2	128.2	1.0	5.61
Including		130.2	131.7	1.5	6.14
DDMAN20-30	DD	78.2	96.2	18.0	7.01
Including		83.2	95.2	12.0	9.88
Including		86.2	95.2	9.0	12.02

Hole ID	Hole Type	From	То	Drilled Interval (m)	Au (g/t)
DDMAN20-31	DD	93.2	114.2	21.0	2.26
Including		95.2	106.2	11.0	3.59
Including		95.2	96.2	1.0	7.02
Including		99.2	100.2	1.0	8.94
DDMAN20-31	DD	137.2	147.2	10.0	2.65
Including		140.2	145.2	5.0	4.54
Including		142.2	144.2	2.0	5.36
DDMAN20-32	DD	130.2	153.2	23.0	2.28
Including		131.7	142.2	10.5	3.77
Including		134.2	138.2	4.0	5.35
Including		150.2	151.2	1.0	2.85
DDMAN20-34	DD	23.7	37.2	13.5	2.38
Including		25.2	26.7	1.5	11.80
Including		32.2	34.2	2.0	2.58
DDMAN20-34	DD	41.2	52.2	11.0	7.51
Including		42.2	46.2	4.0	17.25
DDMAN20-34	DD	93.2	114.2	21.0	6.65
Including		97.2	114.2	17.0	7.93
Including		97.2	100.2	3.0	9.28
Including		103.2	109.2	6.0	13.88
DDMAN20-34	DD	117.2	158.2	41.0	4.75
Including		123.2	127.2	4.0	10.10
Including		123.2	125.2	2.0	15.95
Including		130.2	144.2	14.0	7.86
Including		131.2	134.2	3.0	5.07
Including		138.2	143.2	5.0	15.11
Including		151.2	152.2	1.0	8.84
DDMAN20-40	DD	70.0	81.0	11.0	2.13
Including		73.0	79.0	6.0	2.78
DDMAN20-41	DD	153.0	177.0	24.0	5.14
Including		154.0	175.0	21.0	5.75
Including		155.5	160.0	4.5	14.72
Including		169.0	170.0	1.0	12.10
DDMAN20-44	DD	39.0	57.0	18.0	2.11
Including		40.0	43.0	3.0	7.12
Including		41.0	43.0	2.0	9.43
Including		47.0	48.0	1.0	2.24
Including		56.0	57.0	1.0	2.13

				SECTIONS AT	F MANKOUKÉ T 2 G/T AU)
Hole ID	Hole Type	From	То	Drilled Interval (m)	Au (g/t)
Note: this table incluand a drilled thickness of drilled thickness of drilled thickness of	ess of at least 10 ls of significant	0 m, allow intercepts	ing a max (with a g	imum of 2 m of rade of at least 0	waste within the

Based on the data available at the effective date of the report, ACA Howe interprets the primary mineralised zone at Mankouké South to be dipping vertically or steeply to the west, with zones of shallower to sub-horizontal dip in the oxide portion of the deposit. Where holes drilled towards the west have intersected the steeply dipping mineralised zone, the intersections reported by Roscan and shown in Appendices 5 to 7 may be wider than the true thickness. However, ACA Howe notes that the results of only one drill hole oriented to the east were available at the effective date of the report and more recently drilled holes should confirm the geometry of the mineralised zone.

Central Mankouké

At Central Mankouké, Roscan's drilling has intersected significant mineralisation within saprolite and breccia in an area with a footprint of around 500 m by 50-100 m depending on the degree of remobilisation within the saprolite. Mineralisation has been identified from surface down to 80 m depth. The known mineralisation lies on the eastern flank of an isolated magnetic high.

Table 6 shows selected significant intersections at Central Mankouké. Only drilled intervals over 10 m in length and at least 2 g/t Au are shown. Full details of significant intersections drilled by Roscan (of at least 1 m and 0.5 g/t Au), including any higher-grade intervals within the overall intersection, are shown in Appendices 5 to 7.

The significant intersections described in this section and shown in Appendices 5 to 7 show drilled rather than true thicknesses. Initial modelling of the drill hole data at Central Mankouké, from Section 1380450 N to Section 1380790 N, suggests that the mineralised zone has a northerly trend, and may dip to the east at approximately 40° to 50° . Given that all drill holes in this area have a dip of -50° and an azimuth of 270°, it is likely that there would only be a minor difference between the drilled thickness and true thickness. However, no structural data is available from the drilling at Central Mankouké and the geometry of the zone needs to be confirmed.

Hole	Hole Type	From	То	Drilled Interval (m)	Au (g/t)
ACMan-18-81	AC	0	14	14	5.94
Including		10	14	4	14.89
Including		10	12	2	26.70
ACMan-18-82	AC	10	24	14	8.68
Including		12	20	8	14.21
Including		16	20	4	24.88
Including		16	18	2	41.50
ACMan-18-83	AC	26	44	18	8.47
Including		34	40	6	22.15
Including		36	40	4	29.00
ACMan-19-06	AC	44	54	10	2.63
Including		46	52	6	3.25
ACMan-19-96	AC	16	26	10	3.66
Including		24	26	2	7.87
DDHMan-19-04	DD	79.1	89.1	10	8.63
Including		79.1	86.1	7.0	11.48
DDHMan-19-08	DD	66.1	76.1	10	3.45
Including		73.1	76.1	3.0	6.76

Note: this table includes selected mineralised intercepts with a grade of at least 2 g/t Au and a drilled thickness of at least 10 m, allowing a maximum of 2 m of waste within the intercept. Full details of significant intercepts (with a grade of at least 0.5 g/t Au and drilled thickness of at least 1 m) are shown in Appendices 5 to 7.

Dabia Sud

The Dabia Sud permit includes the Kabaya deposit and the Walia and Dissé prospects. At the effective date of the report, Roscan had not conducted any exploration in the Dabia Sud permit.

Two mineralised zones were identified at Kabaya by the previous owners (Kabaya main and Kabaya southwest), oriented in a southwesterly direction over lengths of 350 m and 150 m respectively (SGS, 2019). A Qualified Person has not undertaken sufficient work on behalf of Roscan to enable the Company to verify this information.

Further information on the historical exploration completed in the Dabia Sud permit, and the historical mineral resource estimate for Kabaya, is given in Section 1.2.

1.5. CONCLUSIONS

This Technical Report constitutes an independent verification of the exploration activities at the Kandiolé Project in Southwest Mali.

Exploration by Roscan has resulted in the discovery of significant mineralisation at Central Mankouké and Mankouké South. Further significant intersections have been made by previous owners of the Dabia Sud permit and an historical mineral resource estimate was conducted by SGS in 2019, though a Qualified Person has not undertaken sufficient work on behalf of Roscan to enable the Company to classify this historical estimate as a current mineral resource. These areas are part of a regional structural trend including the Siribaya deposit (IAMGOLD) to the south and the Sory and Seko prospects (Oklo Resources) to the north.

Independent verification samples taken by ACA Howe in August 2019 confirm the presence of significant gold mineralisation within the Kandiolé Project area. ACA Howe's verification samples generally returned higher grades than the original samples taken by Roscan. This was investigated by Roscan through the re-assaying of quarter core samples and a number of pulps and duplicates from all drilling types. Results show that the original assays are reliable as the re-assays are within a reasonable range of the originals given the style of mineralisation.

The majority of the QA/QC data is acceptable, however in the 2020 AC drilling the percentage of QA/QC samples has fallen to 5%. It is noted that Bureau Veritas analyses samples in batches of 50, meaning that at 5% QA/QC samples there are always at least two QA/QC samples (CRM, blank or duplicate) per batch. However, ACA Howe recommends that the percentage of QA/QC samples is increased to at least 10%.

ACA Howe is not aware of any environmental, permitting, legal, title, taxation, socio-economic, marketing, political, or other relevant factors that could materially affect Roscan's future exploration plans for the Kandiolé Project.

Based on the significant intercepts identified to date, particularly in the Mankouké permit and the Dabia Sud permit acquired in July 2020, ACA Howe concludes that further exploration is warranted.

RECOMMENDATIONS

ACA Howe has reviewed Roscan's planned Phase 1 drilling (including 58,650 m of AC drilling, 400 m of RC drilling and 5,325 m of diamond drilling) and concludes that the locations and metreage are reasonable. Roscan also plans to commission an airborne geophysical survey using NRG's xciteTM Airborne Electromagnetic (AEM) system which ACA Howe agrees is warranted. In addition, Roscan provided a preliminary estimate of metres to be drilled in Phase 2 and ACA Howe considers this to be reasonable. Additional recommendations by ACA Howe are described below.

Additional Recommendations by ACA Howe:

- Follow-up on significant intersections in the Central Mankouké and Mankouké South areas to refine the understanding of the geometry of these zones.
- More detailed regolith mapping would allow for the assessment of transported anomalies and the ranking and prioritisation of anomalies before drilling.

- Preliminary metallurgical testwork (cyanide leach testing) has been completed by Roscan and further work is recommended. Samples with anomalous results should be submitted for petrological study.
- Only limited structural data is currently available from diamond drilling and Roscan should continue to collect this data where possible.
- Roscan should ensure that sufficient duplicates, blanks and CRMs are included in the sample sequence for all future drilling. This should be at a minimum level of 10%.
- Reportedly unmineralised DD intervals should be checked if the corresponding AC twin interval was mineralised.
- As the understanding of the mineralisation improves, bulk density measurements should be taken regularly and incorporated into the standard operating procedures for the project.
- All drill holes should be plugged and surveyed with an accuracy within 1 m.
- ACA Howe recommends that the calculation of recoveries is reviewed once accurate density measurements have been taken for each weathering zone. It is noted that, in general, AC recoveries appear to decrease with increasing grade. Therefore, drilling and sample collection procedures should be reviewed.
- Acquisition of topographical data with a maximum 1 m accuracy, covering the Mankouké South, Central Mankouké and Kabaya areas.
- Recommendations for the verification of the historical estimate for Kabaya are made in Section 26.

Costs for Phase 1 (Table 7) are estimated based on a two month completion time as advised by Roscan. ACA Howe has estimated the budgeted items from costs provided by Roscan and a quote for the airborne geophysical survey. These are considered to be realistic and in line with local costs established during the site visit. Costs are shown in Canadian Dollars (CAD).

TABLE 7.ESTIMATED BUDGET FOR	PHASE 1
Item	Cost (CAD)
Exploration Activities	
AC drilling – 58,650 m (CAD \$26 / m)	1,524,900
RC drilling – 400 m (CAD \$75 / m)	30,000
Diamond drilling – 5,325 m (CAD \$275 / m)	1,464,375
Drill hole sample assays – approximately 70,000 including QA/QC samples (CAD \$15 / sample)	1,050,000

TABLE 7.ESTIMATED BUDGET FOR PH	HASE 1
Item	Cost (CAD)
Airborne geophysical survey – approximate cost provided by Roscan	400
Regolith mapping and sampling	35,000
Further preliminary metallurgical testwork - assay costs (2,000 samples)	20,000
DTM acquisition	15,000
Sub-total	4,139,675
Personnel	
13 geologists – each at CAD \$3,800 per month	98,800
8 technicians - each at CAD \$3,250 per month	52,000
4 consultant geologists	53,905
11 geological assistants – each at CAD \$1,525 per month	33,550
4 samplers – each at CAD \$825 per month	6,600
58 labourers – each at CAD \$260 per month	30,160
6 drivers – each at CAD \$875 per month	10,500
1 administrator – at CAD \$2,750 per month	5,500
1 administrative assistant – at CAD \$590 per month	1,180
1 accountant - at CAD \$5,150 per month	10,300
2 cooks - each at CAD \$1,185 per month	4,740
6 kitchen assistants – each at CAD \$70 per month	840
1 mechanic – at CAD \$1,065 per month	2,130
1 electrician – at CAD \$1,055 per month	2,110
10 guards – each at CAD \$215 per month	4,300
17 rig guards – each at CAD \$215 per month	7,310
Sub-total	323,925
Camp and Equipment	
Drill and safety supplies (sample bags, standards, core boxes, etc) - at CAD \$70,000 per month	140,000
Camp rental - at CAD \$1,500 per month	3,000
Internet - at CAD \$940 per month	1,880
Food - at CAD \$20,000 per month	40,000

Technical Report on the Kandiolé Gold Project in Southwest Mali, On Behalf of Roscan Gold Corp.

Item	Cost (CAD)
Water	1,000
16 vehicles	168,960
Fuel for generator and vehicles - at CAD \$18,000 per month	36,000
3 bulldozers - each at CAD \$29,500 per month	177,000
Bulldozer fuel - at CAD \$6,000 per month	12,000
~	
Sub-total Other	579,840
Sub-total Other Bamako office costs - at CAD \$13,350 per month	579,840 26,700
Other Bamako office costs - at CAD \$13,350 per month	
Other	26,700
Other Bamako office costs - at CAD \$13,350 per month Consultancy fees	26,700 25,000
Other Bamako office costs - at CAD \$13,350 per month Consultancy fees Sub-total	26,700 25,000 51,700

Roscan provided a preliminary follow-up drilling plan (metreage and drilling type for each area) for review by ACA Howe, however drill hole locations have not yet been planned. While the final drilling plan and budget for Phase 2 is largely dependent on the results of Phase 1, it is expected that Phase 2 will be completed, though possibly in a modified form.

Costs for Phase 2 (Table 8) are based on an estimated completion time of three months.

TABLE 8.ESTIMATED BUDGET FOR PHASE 2	
Item	Cost (CAD)
Exploration Activities	
AC drilling – 30,000 m (CAD \$26 / m)	780,000
RC drilling – 10,000 m (CAD \$75 / m)	750,000
Diamond drilling – 13,000 m (CAD \$275 / m)	3,575,000
Drill hole sample assays – approximately 60,000 including QA/QC samples (CAD \$15 / sample)	900,000

TABLE 8. ESTIMATED BUDGET FOR PHASE 2		
Item	Cost (CAD)	
Sub-total	6,005,000	
Personnel		
13 geologists – each at CAD \$3,800 per month	148,200	
8 technicians - each at CAD \$3,250 per month	78,000	
4 consultant geologists	80,857	
11 geological assistants – each at CAD \$1,525 per month	50,325	
4 samplers – each at CAD \$825 per month	9,900	
58 labourers – each at CAD \$260 per month	45,240	
6 drivers – each at CAD \$875 per month	15,750	
1 administrator – at CAD \$2,750 per month	8,250	
1 administrative assistant – at CAD \$590 per month	1,770	
1 accountant - at CAD \$5,150 per month	15,450	
2 cooks - each at CAD \$1,185 per month	7,110	
6 kitchen assistants – each at CAD \$70 per month	1,260	
1 mechanic – at CAD \$1,065 per month	3,195	
1 electrician – at CAD \$1,055 per month	3,165	
10 guards – each at CAD \$215 per month	6,450	
17 rig guards – each at CAD \$215 per month	10,965	
Sub-total	485,887	
Camp and Equipment		
Drill and safety supplies (sample bags, standards, core boxes, etc) - at CAD \$70,000 per month	210,000	
Camp rental - at CAD \$1,500 per month	4,500	
Internet - at CAD \$940 per month	2,820	
Food - at CAD \$20,000 per month	60,000	
Water	1,000	
16 vehicles	253,440	
Fuel for generator and vehicles - at CAD \$18,000 per month	54,000	
3 bulldozers - each at CAD \$29,500 per month	265,500	

TABLE 8.ESTIMATED BUDGET FOR PHASE 2		
Item	Cost (CAD)	
Bulldozer fuel - at CAD \$6,000 per month	18,000	
Sub-total	869,260	
Other		
Bamako office costs - at CAD \$13,350 per month	40,050	
Consultancy fees	25,000	
Sub-total	65,050	
Total	7,425,197	
10% contingency	742,520	
Grand total	8,167,717	

2. INTRODUCTION

This report constitutes a National Instrument 43-101 (Standards of Disclosure for Mineral Projects) Qualifying Report and was prepared by ACA Howe International Limited (ACA Howe) at the request of Roscan Gold Corporation's (Roscan), a Canadian-based gold exploration company focused on gold exploration in Mali, West Africa.

The purpose of the report is to provide a summary of material scientific and technical information regarding exploration activities on Roscan's Kandiolé Project. Recommendations and budget estimates for near-term work are provided.

Roscan's Kandiolé Project is located in the Kéniéba District of Southwest Mali, West Africa. A regional surface geochemical survey conducted by Roscan on the Kandiolé Project identified several new gold exploration targets. Follow-up exploration drilling identified mineralisation in the Mankouké and Moussala North Permits.

A due diligence field visit was completed in August 2019 by Mr. Patrick O'Sullivan and included the inspection of the main areas of interest within the Kandiolé Project, including the Roscan field camp, recent drill lines and nearby artisanal mining sites. Mr. O'Sullivan was accompanied by Mr. Aboubacar Eby Sylla, Manager of Touba Mining (Roscan's Country Manager) and Roscan geologist Mr. Christian Bantsimba. Discussions were held with Touba Mining and Roscan personnel at Roscan's head office in Bamako and onsite.

The visits allowed for inspection of drill core onsite at the field camp core viewing area and inspection of aircore chip dumps at the drilling sites plus the bagged samples in storage at the Roscan office storage facility in Bamako. Resampling of mineralised zones for independent verification was completed for both drill core and aircore chips, and samples were submitted for analysis at an independent certified laboratory in Bamako.

Since the visit to the Kandiolé Project, Roscan has completed the following exploration activities:

- Aircore (AC), reverse circulation (RC) and diamond drilling.
- Ground geophysical induced polarisation and magnetic surveying.
- Termite sampling.
- Re-assaying of selected drill core from 2019.
- Bottle roll tests.

In addition, Roscan completed the acquisition of the adjacent 35 km² Dabia Sud permit on 3rd July 2020, which includes the Kabaya Deposit, and the Walia and Dissé prospects. It should be noted that ACA Howe did not visit the Dabia Sud permit during the August 2019 site visit.

ACA Howe considers that the significant assay results reported at Mankouké South are suitable for the purpose used in this report without completing a new site visit due to the following factors:

- Mankouké South was visited in August 2019, enabling assessment of the surface geology, topography, infrastructure, and access. Two independent verification samples were taken from the initial line of AC holes drilled at Mankouké South.
- ACA Howe has been provided with information on the drilling completed since the site visit on a regular basis, and has completed a detailed review of core photos, geological logs, cross sections, assay results, assay certificates and QA/QC data.

• Mankouké South is considered by ACA Howe to be part of the same structural corridor and deposit type as Central Mankouké, from which drill core was reviewed and sampled during the visit in August 2019.

Further to the above, ACA Howe considers that the reporting of data from the newly acquired Dabia Sud permit is suitable for the purpose used in this report without completing a new site visit due to the following factors:

- The permit is located directly adjacent to Roscan's permits visited during the August 2019 site visit and the geological setting, deposit type, topography and infrastructure are considered to be the same.
- At the effective date of the report, no exploration has been completed in the Dabia Sud permit by Roscan.
- The main area of interest identified in the permit by previous owners is the Kabaya deposit, which is considered to be part of the same structural corridor as Mankouké South and Central. These areas were visited during the August 2019 site visit and independent samples were taken from both.
- The resource estimate for the Kabaya deposit (SGS, 2019) is being treated as an historical estimate as a Qualified Person has not undertaken sufficient work on behalf of Roscan to enable the Company to classify this historical estimate as a current mineral resource.

Roscan's exploration of the Kandiolé Project is on-going. Categories of data provided to ACA Howe by email and FTP transfer up to a cut-off date of 5th July 2020 are as follows:

- Annual and quarterly reports submitted to the Direction Nationale de la Géologie et des Mines (DNGM).
- Assay certificates for drill hole and termite sample analysis.
- Drill hole and surface geochemical sampling locations and results.
- A report, images and data from the induced polarisation and magnetic surveys.
- Details of samples which were re-assayed and results.
- Results of initial bottle roll testing.
- Details of permits and option agreements.
- Various maps showing Roscan's permit portfolio with regional geochemistry, geology topography and geophysics.
- Reports by previous explorers Ashanti Mali and Robex Resources.
- Cross sections, core photos and geological logs from Roscan's drilling.

ACA Howe is an independent geological and mining consultancy based in the United Kingdom. ACA Howe, its directors, employees and associates neither has nor holds:

- Any rights to subscribe for shares in Roscan either now or in the future.
- Any vested interests in any concessions held by Roscan or any adjacent concessions.
- Any rights to subscribe to any interests in any of the concessions held by Roscan either now or in the future.
- Any vested interests in either any concessions held by Roscan or any adjacent concessions.
- Any right to subscribe to any interests or concessions adjacent to those held by Roscan, either now or in the future.
- The Authors' only financial interest is the right to charge professional fees at normal commercial rates, plus normal overhead costs, for work carried out in connection with the

investigations reported here. Payment of professional fees is not dependent either on project success or project financing.

ACA Howe has utilised information provided by Roscan and has made every reasonable attempt to verify the accuracy and reliability of the data and information provided to them, and to identify areas of possible error or uncertainty. To the best of its knowledge these details are in accordance with the facts and contain no omission likely to affect the success of the project. ACA Howe, its directors, employees and associates accept no liability for the omission of information or data which has not been brought to their attention or for errors in data and information which have not been possible to identify.

The business of mining and mineral exploration, development and production by their nature contain significant risks. Given the nature of the mining business many factors may be subject to change over relatively short periods of time and as such actual results may be significantly more or less favourable. Except as specifically required by law, ACA Howe and its directors accept no liability for any losses arising from reliance upon the information presented in this technical report. As of the publication date of this document, ACA Howe and Roscan are not aware of any likely or pending adverse effect as to business, operations, properties, assets or condition, financial or any other material change, which may arise within the six months following the publication of this report.

3. RELIANCE ON OTHER EXPERTS

Information on property title, mineral rights, taxes, royalties and environmental aspects were provided to ACA Howe by Roscan under the supervision of Mr Greg Isenor, Roscan's Executive Vice-Chairman and designated Qualified Person, by email on 7th July 2020.

ACA Howe is not qualified to comment on the legality of title and, as such, has not researched property title or mineral rights. Section 4.1 and Appendix 1 are entirely dependent on information provided by Roscan. In addition, the property boundary shown on figures throughout this report is dependent on information provided by Roscan.

ACA Howe has no reason to believe that the ownership of title is other than that which was reported by Roscan.

4. PROPERTY DESCRIPTION AND LOCATION

The Kandiolé Project comprises seven contiguous exploration permits totalling 288.8 km² located within the Kéniéba "Cercle", an administrative sub-area of the Kayes Region, some 400 km west of Bamako, the capital of Mali (Figures 1 and 2). The centre point of the project area is at approximately 262000mE, 1389000mN (WGS84, UTM Zone 29 N). The Malian State is the owner of all mineral rights in the country, and the Mines Minister has responsibility for the administration of mining activity. The Minister delegates certain powers to the Direction Nationale de la Géologie et des Mines (DNGM).

A new mining code was approved by the Malian parliament on 28th April 2020, though ACA Howe understands that the code is not yet active. The main changes in the 2020 mining code are described by Maiga and Schwartz (2019) as being:

- Reduction of the cut-rate corporate tax period from 15 years to 3 years.
- Removal of VAT exemptions during mining production.
- Introduction of a new windfall tax.

McKay (2019) describes an additional change in the 2020 mining code as being a reduction of the stability period, exempting mining companies from mining code changes after they have committed investment in Mali, from 30 years to 10 years.

Roscan's permits were granted under the 2012 Mining Code, adopted to supersede the 1999 Mining Code and regulate all prospecting, exploration and mining activities.

An Exploration Permit (permis de recherche) may be granted under the 2012 Mining Code by order of the Minister for Mines and covers an area of up to 250 km² for specified commodities with an initial period of up to three years. The permit may be renewed twice for two years, with a final renewal period of up to one year to finalise a feasibility study (eight years in total). Permit holders are obliged to report regularly to the Department of Mines on their exploration programmes. An Exploration Permit grants its holder the exclusive right to explore for the commodity group specified within the boundary of the permit and to unlimited depth. In the event of the discovery of minerals not specified on the permit, the holder may request the extension of the permit providing it is free of any mining permit relating to this mineral. An Exploration Permit may be awarded to any applicant that can provide proof of the technical and financial capacity to complete the exploration and meet with health, safety and environmental standards. The application must include the commodities to be explored for and a report detailing the proposed exploration programme and budget.

A Mining Permit (permis d'exploitation) may be granted for 30 years and is renewable for further periods of ten years until the mineral reserves have been exhausted. A Mining Permit may be granted to the holder of an Exploration Permit or a Prospecting Licence. Holders of a Mining Permit are required to enter an agreement referred to as a "Convention d'Établissement" or "Mining Convention Agreement" with the Malian government prior to the commencement of exploration or mining activities and must begin work within three years. A non-dilutable 10% share is owned by the Malian State, and the State reserves the right to acquire an additional 10% in the future. The permit grants the holder the exclusive right to mine the specified commodities within the perimeter of the permit and to an unlimited depth. Proof of a mineable deposit must be provided by submission of a feasibility study. In addition, community development and mine closure plans must be submitted. A license can be transferred to third parties by inheritance or cession under certain conditions established by the Code.

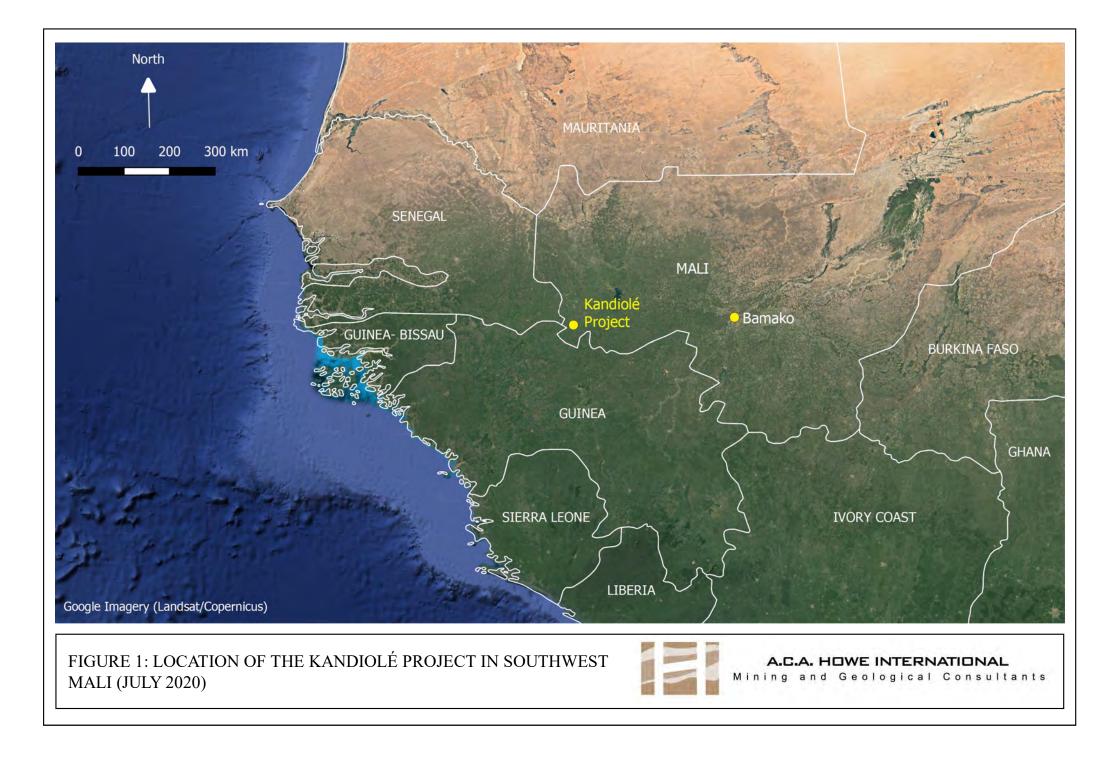
Exploration Permit holders are subject to registration fees, plus taxes on salaries, annual surface royalties and charges and social contributions payable for employees. However, they are not required to pay any other taxes, including VAT.

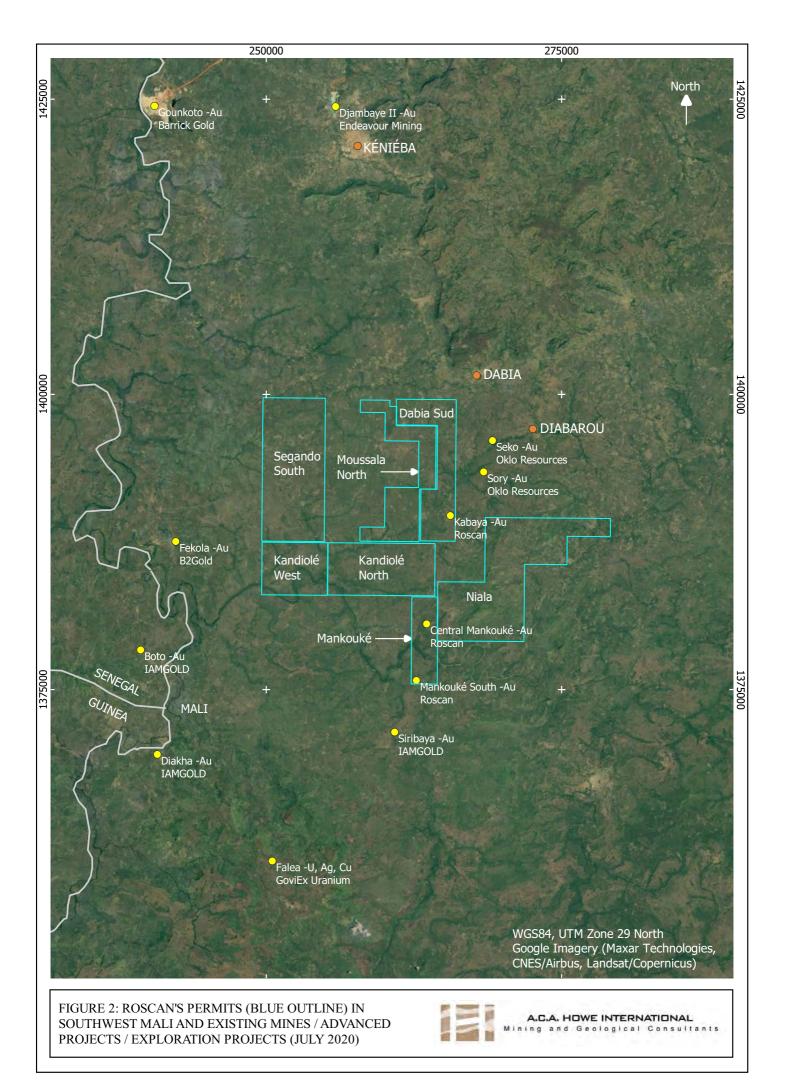
Mining Permit holders are required to pay annual surface royalties, flat rate contribution, charges and social contributions for employees, capital yields taxes and statistical royalties. Mining Permit holders are not required to pay VAT until the end of the third year after commencement of the mining operation.

Gold explorers and miners are subject to a tax called "Impôt Spécial sur Certains Produits (ISCO)" (Special Tax on Certain Products)". The tax base of ISCO is turnover excluding VAT. An additional tax called "taxé ad Valorem" has a taxable base equal to the starting value of the tonnage extracted minus intermediary fees and expenses. Gold and other precious metals are levied at a 3% royalty rate.

The holder of an Exploration or Mining Permit is not automatically granted surface rights. If it is not possible to obtain consent from the landowner then access can be legally granted subject to adequate and prior compensation. After the completion of exploration and mining activities, the permit holder is required to return the land to its previous state by restoring topsoil and the road network.

No mining development may be opened on the surface or drill holes drilled to a depth in excess of 50 m within a radius of 50 m from:


- Villages, groups of dwellings or wells without consent of the landowner.
- Waterways, public works and works of art without the consent of the relevant authorities.


If a permit holder affects the quality or quantity of water supply, they will be obliged to make additional supplies available. The 2012 Mining Code requires that an exploration permit holder obtains consent to work the ground from local landholders, provides access to local communities to communications lines, and contributes to the improvement of sanitary and educational infrastructure, as well as implementing recreational facilities for community and employee use.

The Exploration Permits are subject to the environmental guidelines of the 2012 Mining Code, which includes requirements regarding the Environmental and Social Impact Assessment (EIES) and a community development plan. The DNGM must ensure the existence of a Technical Committee for Community and Local Development to approve, monitor and control the implementation of the community development plan and provide periodical reports to the Minister of Mines.

Under Article 20 of Decree 08-346, the Minister of Environment issues an environmental permit if the EIES report is satisfactory.

4.1. PERMIT DETAILS

Roscan's permits cover a total area of 288.8 km² and their location is shown on Figure 2. The permit property boundaries have not yet been legally surveyed or pegged on the ground, but the permit corner positions are accurately located on maps. The relevant details of the permits are summarised below.

4.1.1. SEGANDO SOUTH PERMIT

- Permit owner: KL Mining/KA Gold Mining
- Agreement with owner: Sole, exclusive and irrevocable option agreement between Roscan and KL Mining SARL / KA Gold Mining SARL (31st March 2018)
- Permit no: 2015-1281MM-SG dated 15th May 2015
- Permit type: Exploration Permit (Permis de Recherche)
- Area (km²): 65
- Renewal date: Roscan awaiting confirmation
- New permit costs: 5,000,000 CFA (around CAD\$11,000)
- Royalties: 2% Net Smelter Royalty (NSR) with the right to buy back 1% of the NSR for \$1.2 million (USD) covering both the Segando South and Moussala North permits (combined).
- Environmental liabilities: As per the mining code described above.
- Surface rights: Roscan notes that no agreements are required at this stage.

Details of option agreement:

- To date, Roscan has a 70% interest in the permit, acquired beneficially.
- A further USD\$180,000 shall be paid by March 2021 in order to acquire the remaining 30% interest in the Segando South and Moussala North permits and to retain the 70% interest currently held. In addition, Roscan is committed to USD\$125,000 in exploration expenditures by 31st March 2021 on the Segando South and Moussala North permits (combined).
- Roscan is responsible for maintaining the permit in good standing with the DNGM, including payment of all applicable fees and taxes and delivery of reports and documents required.

ACA Howe is assured by Roscan that the permit is in good standing and is not aware of any significant risk factors that may affect access, title, or right or ability to perform work on the permit.

4.1.2. KANDIOLÉ WEST PERMIT

- Permit owner: Kara Mining SARL
- Agreement with owner: Sole, exclusive and irrevocable option agreement between Touba Mining SARL and Kara Mining SARL (25th May 2018)
- Permit no: 2018-1936MMP-SG dated 13th June 2018.
- Permit type: Exploration Permit (Permis de Recherche)
- Area (km²): 25
- Renewal date: 13th June 2021
- Renewal costs: 5,000,000 CFA (around CAD\$11,000)
- Royalties: 2% NSR, with the right to buy back 1% of the NSR for CAD\$1 million, Kara Mining has a 4.5% net profit interest royalty for the first 10 years of any production, followed by a 5% net profit royalty in the subsequent 10 year period.
- Environmental liabilities: As per the mining code described above.

• Surface rights: Roscan notes that no agreements are required at this stage.

Details of option agreement:

- Touba Mining has assigned its option rights to the permit to Roscan through a sole, exclusive and irrevocable option agreement. On execution of the agreement, Touba Mining shall retain a 5% net profit interest and a 2% NSR. Roscan will have the right to buy back 1% of the NSR for CAD\$1 million.
- To date, Roscan has acquired a 80% interest in the permit.
- A further CAD\$20,000 shall be paid by November 2020 in order to acquire the remaining 20% interest in the permit and to retain the 80% interest currently held.
- Roscan is responsible for maintaining the permit in good standing with the DNGM, including payment of all applicable fees and taxes and delivery of reports and documents required.

ACA Howe is assured by Roscan that the permit is in good standing and is not aware of any significant risk factors that may affect access, title, or right or ability to perform work on the permit.

4.1.3. MOUSSALA NORTH PERMIT

- Permit owner: Roscan Gold Mali Sarl
- Agreement with previous owner: Sole, exclusive and irrevocable option agreement between Roscan and KL Mining SARL / KA Gold Mining SARL (31st March 2018)
- Permit no: 2555MMP-SG2020-1366MMP-SG dated 6th April 2020.
- Permit type: Exploration Permit (Permis de Recherche)
- Area (km²): 32
- Renewal date: 6th April 2023
- Renewal costs: 5,000,000 CFA (around CAD\$11,000)
- Royalties: 2% Net Smelter Royalty (NSR) with the right to buy back 1% of the NSR for USD\$1.2 million covering both the Moussala North and Segando South permits (combined)
- Environmental liabilities: As per the mining code described above.
- Surface rights: Roscan notes that no agreements are required at this stage.

Details of option agreement:

- To date, Roscan has a 70% interest in the permit, acquired beneficially.
- A further USD\$180,000 shall be paid by March 2021 in order to acquire the remaining 30% interest in the Moussala North and Segando South permits and to retain the 70% interest currently held. In addition, Roscan is committed to USD\$125,000 in exploration expenditures by 31st March 2021 in the Moussala North and Segando South permits (combined).
- Roscan is responsible for maintaining the permit in good standing with the DNGM, including payment of all applicable fees and taxes and delivery of reports and documents required.

ACA Howe is assured by Roscan that the permit is in good standing and is not aware of any significant risk factors that may affect access, title, or right or ability to perform work on the permit.

4.1.4. KANDIOLÉ NORTH PERMIT

- Permit owner: Ouani-Or SARL
- Agreement with owner: Sole, exclusive and irrevocable option agreement between Touba Mining SARL and Ouani-Or SARL (25th May 2018)
- Permit no: 2018-0511MMP-SG dated 1st March 2018.
- Permit type: Exploration Permit (Permis de Recherche)
- Area (km²): 40
- Renewal date: 1st March 2021
- Renewal costs: 5,000,000 CFA (around CAD\$11,000)
- Royalties: 2% NSR with the right to buy back 1% of the NSR for CAD\$1 million, Ouani-Or SARL has a 4.5% net profit interest royalty for the first 10 years of any production, followed by a 5% net profit royalty in the subsequent 10 year period.
- Environmental liabilities: As per the mining code described above.
- Surface rights: Roscan notes that no agreements are required at this stage.

Details of option agreement:

- Touba Mining has assigned its option rights to the permit to Roscan through a sole, exclusive and irrevocable option agreement. On execution of the agreement, Touba Mining shall retain a 5% net profit interest and a 2% NSR. Roscan will have the right to buy back 1% of the NSR for CAD\$1 million.
- To date, Roscan has acquired a 90% interest in the permit.
- A further CAD\$10,000 shall be paid by November 2020 in order to acquire the remaining 10% interest in the permit and to retain the 90% interest currently held.
- Roscan is responsible for maintaining the permit in good standing with the DNGM, including payment of all applicable fees and taxes and delivery of reports and documents required.

ACA Howe is assured by Roscan that the permit is in good standing and is not aware of any significant risk factors that may affect access, title, or right or ability to perform work on the permit.

4.1.5. MANKOUKÉ PERMIT

- Permit owner: Minex SARL
- Agreement with owner: Sole, exclusive and irrevocable option agreement between Roscan and Minex SARL (22nd June 2018)
- Permit no: 2019-3684MMP-SG dated 18th October 2019 (geographic extension of permit boundary)
- Permit type: Exploration Permit (Permis de Recherche)
- Area (km²): 16.8
- Renewal date: 3rd April 2020 (in progress)
- Renewal costs: 5,000,000 CFA (around CAD\$11,000)
- Royalties: 3% NSR with the right to buy back 2% of the NSR for USD\$1 million
- Environmental liabilities: As per the mining code described above.
- Surface rights: Roscan notes that no agreements are required at this stage.

Details of option agreement:

- To date, Roscan has a 40% interest in the permit, acquired beneficially.
- A cash payment of CAD\$70,000 has been made to Minex and a share payment of 250,000 shares is currently being processed. Once complete, Roscan will have a 70% interest in the permit. A further payment CAD\$80,000 and 250,000 shares in Roscan shall be issued by June 2021 in order to acquire the remaining 30% interest in the permit and to retain the 70% interest currently held (once processed). In addition, Roscan is committed to CAD\$155,000 in exploration expenditures by 22nd June 2021.
- Roscan is responsible for maintaining the permit in good standing with the DNGM, including payment of all applicable fees and taxes and delivery of reports and documents required.

ACA Howe is assured by Roscan that the permit is in good standing and is not aware of any significant risk factors that may affect access, title, or right or ability to perform work on the permit.

4.1.6. NIALA PERMIT

- Permit owner: SOLF SARL
- Agreement with owner: Sole, exclusive and irrevocable option agreement between Roscan and SOLF SARL (27th April 2018)
- Permit no: 2018-1751MMP-SG dated 23rd May 2018
- Permit type: Exploration Permit (Permis de Recherche)
- Area (km²): 75
- Renewal date: 23rd May 2021
- Renewal costs: 5,000,000 CFA (around CAD\$11,000)
- Royalties: 2% NSR with the right to buy back 1% of the NSR for CAD\$500,000
- Environmental liabilities: As per the mining code described above.
- Surface rights: Roscan notes that no agreements are required at this stage.

Details of option agreement:

- To date, Roscan has a 70% interest in the permit, acquired beneficially.
- A further CAD\$40,000 shall be paid by May 2021 in order to acquire the remaining 30% interest in the permit and to retain the 70% interest currently held. In addition, Roscan is committed to CAD\$155,000 in exploration expenditures by 27th April 2021.
- Roscan is responsible for maintaining the permit in good standing with the DNGM, including payment of all applicable fees and taxes and delivery of reports and documents required.

ACA Howe is assured by Roscan that the permit is in good standing and is not aware of any significant risk factors that may affect access, title, or right or ability to perform work on the permit.

4.1.7. DABIA SUD

- Permit owner: Komet Mali Sarl
- Agreement with owner: Roscan Gold has acquired 100% of Komet Mali Sarl in exchange for \$1.6M (CAD) in cash and the issuance of an aggregate of 4,060,366 common shares of Roscan.
- Permit no: 2020-1045MMP-SG dated 19th March 2020
- Permit type: Exploration permit (permis de recherche)
- Area (km²): 35

- Renewal date: 3rd February 2022
- Renewal costs: 5,000,000 CFA (around CAD\$11,000)
- Royalties: None
- Environmental liabilities: As per the mining code described above.
- Surface rights:

Details of agreement:

- Roscan Gold Mali Sarl has acquired 100% of the permit through ownership of Komet Mali Sarl.
- Roscan is responsible for maintaining the permit in good standing with the DNGM, including payment of all applicable fees and taxes and delivery of reports and documents required.

ACA Howe is assured by Roscan that the permit is in good standing and is not aware of any significant risk factors that may affect access, title, or right or ability to perform work on the permit.

5. ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

5.1. ACCESSIBILITY

The Kandiolé Project is situated 5 km southwest of Dabia village, which lies on the paved highway Route Nationale 24 (RN24), 400 km west of Bamako within the Kayes region in western Mali. The Roscan field office is in the town of Diabarou, 6.5 km southeast of Dabia on a laterite road. The nearest large town is Kéniéba, a further 26 km along the RN24. Kéniéba has its own regional airport while a private airstrip, which can be used for emergency purposes, lies mid-way between Dabia and Diabarou. From Bamako, Dabia can be reached in approximately 7 hours.

The area is accessible by various bush and gravel roads passable to 4WD vehicles. The Falémé River separates the southernmost parts of the Kandiolé West and Mankouké permits and is passable by local boat (piroque) during the rainy season. All rivers are passable by 4WD vehicles outside the rainy season. The smaller rivers, which drain the exploration licences to the north are passable all year.

Roscan has established a permanent, well-equipped field camp at Diabarou village with a diesel generator set power supply and WiFi communications. A covered core-logging area has been constructed and includes buildings with excess capacity for core storage. Bagged samples are stored temporarily in a nearby rented building prior to dispatch to the assay laboratory. Roscan is currently constructing an indoor core store where drill core will be stored on completion.

5.2. CLIMATE, VEGETATION AND FIELD SEASON

The Kandiolé Project is within the southern part of the Sahel region of West Africa and has a continental subtropical climate. The region has two distinct seasons; a rainy season from June to October with an annual rainfall of around 1,400 mm, and a dry season from October to May when it does not generally rain, though there are occasional thunderstorms. The period from February to June is generally hot and dry (35-45°C), from June to November is generally hot and humid (30-40°C) with most rain in August to September, while it is relatively mild and dry (20-25°C) in December to February. The hot, dry, dust-laden Harmattan wind can blow from the north during the

period of December to March. The majority of the project area is accessible all year, though there can be minor access problems during the rainy season.

Vegetation is generally sparse, consisting of grass and relatively few thorny and deciduous trees, which are more common along water courses. The natural vegetation comprises low-density woodland slopes and savannah plateau. The savannah grasses die back in the dry season and the local inhabitants burn the countryside to encourage new grass and leaf growth prior to the rains. Any forested areas tend to become degraded closer to villages due to crop cultivation.

5.3. PHYSIOGRAPHY

The relatively low-lying and gently rolling countryside is made up of several plateaux or erosional peneplains, which are capped with in-situ lateritic crusts or carapaces, while some deposits of eroded laterites also occur. Termite mounds of differing types occur in areas of laterite sheets and the larger mounds (+1 m tall) provide an excellent exploration sampling medium as the ants' activities penetrate the lateritic carapace. The high clay content of the termite mounds provides a suitable substrate for retaining any gold that may be present in the soil profile.

The permitted region is generally level and characterised by gentle, flat-topped to gently-rolling laterite hills. The Falémé river flows from east to west at, or close to the boundary with the southern permits and drains to the northwest where it forms a natural border with Senegal. Numerous moderately well-developed rivers and drainage channels are fed in the wet season by run-off from the lateritic plateaus.

Elevations within the gently rolling plains southwest of Diabarou generally range from 130-200 m above sea level. A relatively high ridge forms an escarpment and topographic highs from the southwest of the Niala permit, where it forms a natural boundary to the Falémé River and extends northeast to Niala village. The ridgelines form generally northeast-southwest trending topography with localised elevations of up to 400 m.

5.4. LOCAL RESOURCES AND INFRASTRUCTURE

The local population are essentially "orpailleurs" (gold panners), shopkeepers, motorcycle repair mechanics and subsistence farmers who raise cattle and goats and carry out dry land grain, vegetable (including gourds) and fruit tree (mango) farming. The cultivation of gourds is for both cooking and gold panning activities, which is the principal economic activity in west and southwest Mali.

A team of experienced local geologists and assistant geologists work for Roscan. A large, experienced pool of local labour and a certain amount of heavy equipment is available in the nearby Dabia village. Heavy equipment such as bulldozers and trucks are available in Kéniéba, a further 27 km northwest along the RN24 and modern telephone communications, government offices, wholesalers and a small regional airport are also available there.

Diabarou village hosts two mobile phone mast stations (Orange and Malitel), a primary school, a Community Health Centre (Centre de Santé Communautaire de Diabarou) and a pharmacy plus many mechanical workshops and several small trader stalls. Roscan also purchases diesel in Diabarou.

The permits themselves are primarily north of the Falémé River, which provides locals with water for gold panning and which may be used for general exploration activities. Any of the ephemeral stream tributary valleys that drain to the Falémé could potentially be used to drill for water supply

for mining purposes (upon a favourable Environmental Impact Study). The river crosses the southern part of the Mankouké licence and is passable by local boats (piroque) during the 4-month wet season. A 2 km long, private lateritic airstrip lies about 2.5 km northeast of Diabarou and Roscan's field camp and may be used for emergency services.

Ample area is available for potential mine infrastructure such as tailings storage areas, waste disposal areas, heap leach pads, and processing plant sites, although given the stage of the project no detailed studies have been completed. Mines in the region are responsible for the generation of their own electricity through diesel generators.

6. HISTORY

6.1. REGIONAL EXPLORATION

Artisanal mining in western Mali helped to support the Mali Empire between 1230 and 1600. Nowadays it provides a livelihood for thousands of orpailleurs whose non-mechanised production is estimated at some 2 tonnes of gold per year. Dredging in Mali dates back to 1910 when the Compagnie des Mines de la Falémé exploited gold on the Falémé River from the years before the First World War up to 1955 (McLane, 1977). Concessions at the time included 100 m of bank on either side of the river. Today Chinese alluvial miners continue this practice west of the ford, which crosses the Falémé River in the south of the Mankouké permit. Artisanal mining has been historically conducted on alluvial, lateritic soils and quartz vein deposits in the area with evidence of artisanal mining from immediately west of Dabia village at the north of the permits to the far south at the crossing of the Falémé River.

From 1960 to 1996 regional exploration programmes were carried out over the larger Kéniéba area by the French Bureau de Recherches Géologiques et Minières (BRGM) in cooperation with the DNGM, a department of the Ministry of Mines (BRGM, 1978 and 1982). These programmes targeted gold and base metal mineralisation in the Paleoproterozoic and consisted of satellite image interpretation (Landsat) and regional geological field mapping and outcrop sampling, often combined with regional soil geochemistry surveys (Figure 3). In the early to mid 2000's detailed exploration work was mainly focused on the Medinandi permit, 40 km southwest of Kéniéba.

6.2. EMERGING GOLD AFRICA (EAG) (1996-1997)

In 1996, EAG, with the support of Geoconsult (a private Russian company), compiled the previous work completed in the Kolomba region. The work included areas favourable for gold mineralisation, such as Moussala North. However, no detailed exploration was completed at Moussala North as EAG was not the owner of the permit.

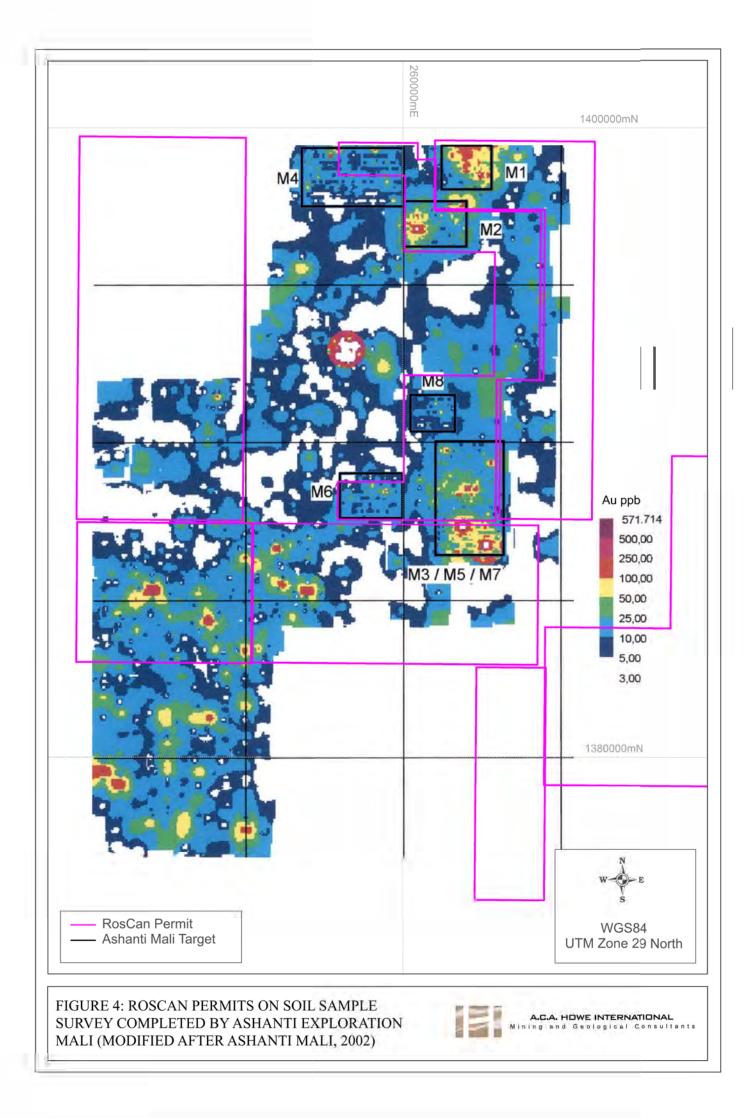
6.3. ASHANTI MALI SA (1997-2000)

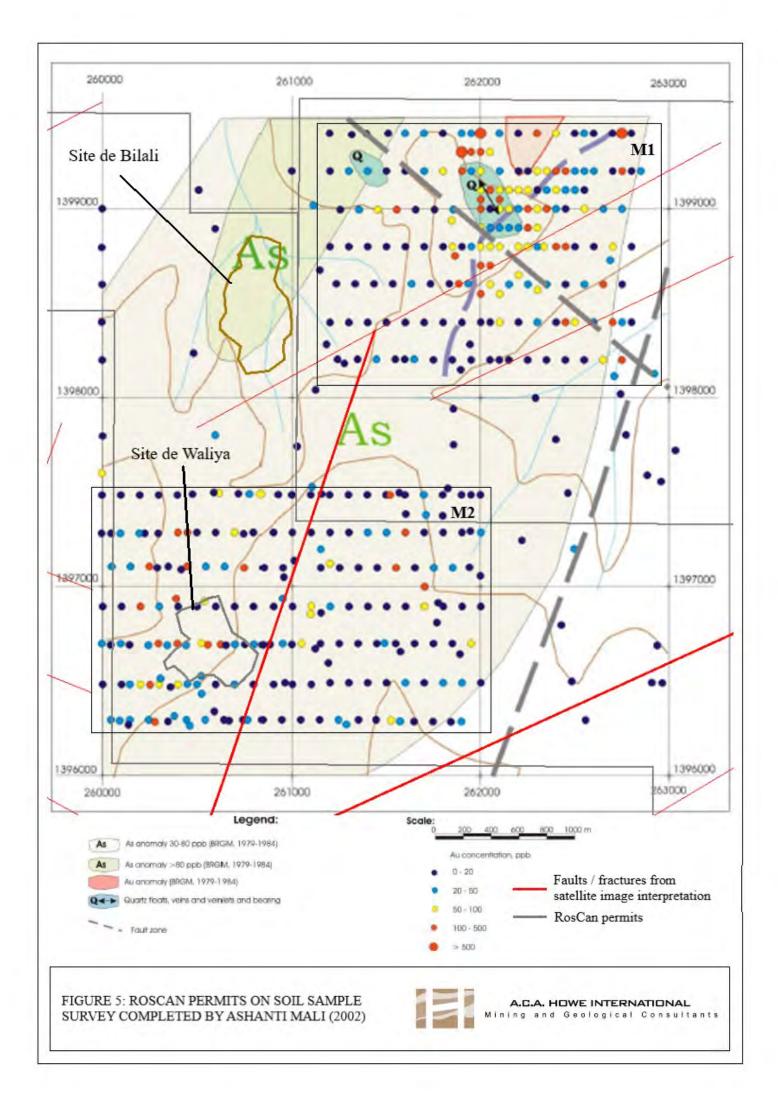
In April 1997 Ashanti Mali SA was the first company to obtain an exploration licence for gold and related metals in the Dabia–Moussala area. The permis d'exploration de Moussala covered 232 km² (Ashanti Mali SA, 2000). In 1997-1998, geologists from the DNGM and Ashanti Mali geologists completed soil sampling surveys totalling 3,425 samples; the initial 810 samples were taken on a 500 x 250 m grid. Sample weights averaged 2 kg and samples were prepared by ABILAB in Bamako and shipped to ITS de Mandiana in Guinea for analysis for gold and arsenic. The resulting anomalies were named M1 to M8 (Figure 4) and all lie at least partly within Roscan's permits.

Target areas M1 to M8 were subsequently investigated with a further 1,221 soil samples on grids of 200 x 100 m. In addition, 697 soil samples were taken to complete the sampling started in the previous phase of work. The samples were prepared in Kayes before being sent to Mandiana for analysis for gold and arsenic. An Ashanti Mali document reports that the anomalies were confirmed. Follow-up pitting was planned but not completed. Target area M1, in the north of the Dabia Sud Permit, is known as Walia and coincides with orpailleur workings. Target area M2 correlates with an anomalous area identified in Roscan's termite and soil sampling programmes. The M3, M5 and M7 target areas are concurrent with anomalism in Roscan's soil sampling survey. Details of Roscan's soil and termite sampling surveys are provided in Section 9. The Ashanti Mali report describes the target areas as follows:

M1 (Walia)

- 153 samples in seven lines, grades up to 4,919 ppb Au.
- Detailed follow-up sampling completed on a 100 x 50 m grid resulting in 697 samples (combined with the sampling of target M5).
- Orpailleur Site de Bilali, described by Robex (2004) as one of the most important active gold diggings in Kenieba province, is approximately 1 km west-southwest of the main anomalous area of Target M1.


The Walia prospect includes anomalous soil samples taken by Ashanti Mali over an area of 1,600 m by 1,000 m with gold grades up to 4,919 ppb Au, along with arsenic anomalism on a northeast orientation (Figure 5). Robex (2004) describe the geological setting as consisting of Birimian meta-sediments (meta-greywacke and schist) intruded by granite. Quartz veins in the meta-sediments trend to the north-northwest and are cut by quartz veinlets on an easterly trend. Robex noted that anomalous gold grades appear to be related to quartz veins and veinlets ranging from centimetres to 1 metre in thickness, present in the meta-sediments. Structurally, the target is associated with a north-northeast trending fault zone cross-cut by a northwesterly structure. Bedrock exhibits locally intense hydrothermal argillic-sericitic alteration with quartz veins of various orientations.


<u>M2</u>

- 207 samples in seven lines, grades up to 378 ppb Au located to the west of a northeast trending structure.
- Orpailleur Site de Waliya, described in Section 7.3, is within Target M2.

Colluvium to the north and laterite to the south. Isolated granites observed in the west. Quartz veining in the north, although becoming less compared to target M1. High gold concentrations are related to areas where quartz float, veins or veinlets are abundant. Although arsenic anomalies with values exceeding 80 ppb are displaced to the north of the high gold values, they are related to the same northeast-trending features

<u>M3, M5, M7</u>

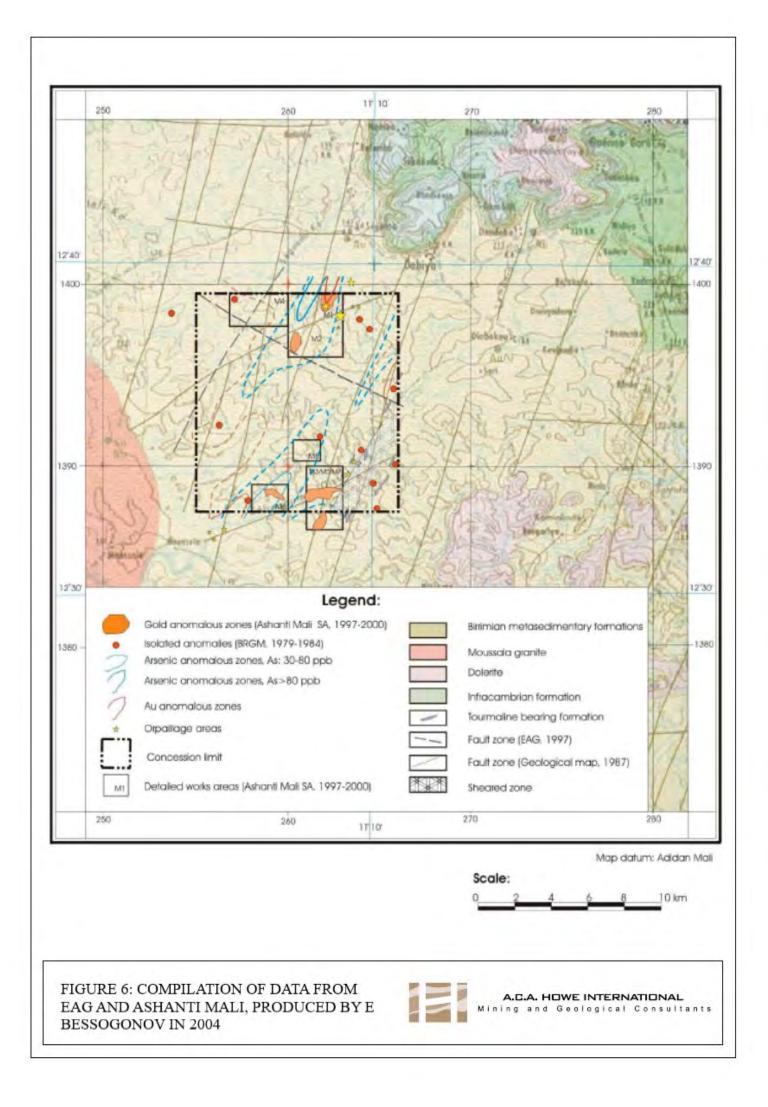
- 448 samples in 18 lines, grades up to 7,900 ppb Au.
- Geology consists of meta-sediments. Laterite is dominant in the south, north and west. A large alluvial zone with artisanal workings cuts through the centre of the target on an east-northeast trend.

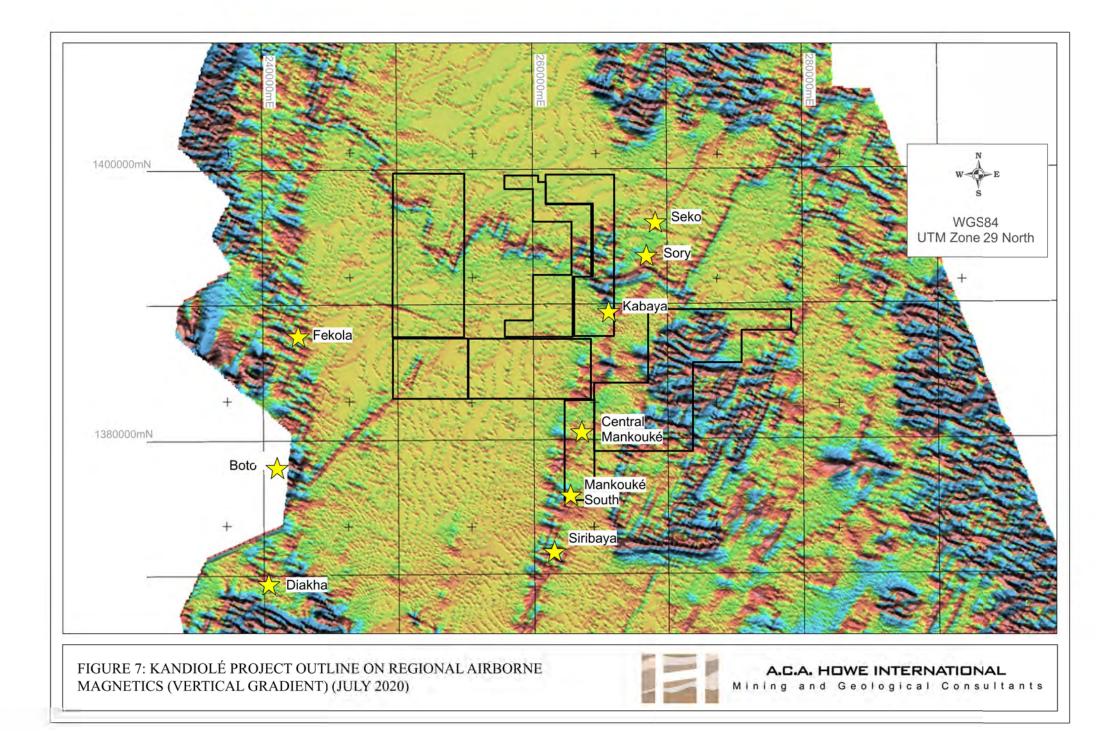
19

M4

- 250 samples.
- Foliation of meta-sediments observed in bands containing north-south trending quartz veins. These veins are cut by east-west trending quartz veinlets which appear to be mineralised.
- Lateritic alteration and various varieties of micaceous schists are observed in some water courses and ravines.

<u>M6</u>


- 52 samples in 5 lines.
- 80% laterite. Isolated areas of granite are observed in the centre west. Areas of quartz veining are restricted.


A geological and geochemical compilation map for the Moussala area was produced by E Bessogonov in 2004, showing data produced by EAG in 1996 to 1997 and Ashanti Mali SA from 1997 to 2000 (Figure 6). The map shows gold anomalies, which are often aligned with fault zones and arsenic anomalies trending to the northeast. In addition, a northeast trending shear zone is mapped in close proximity to the more recently discovered Kabaya Deposit in Roscan's Dabia Sud permit.

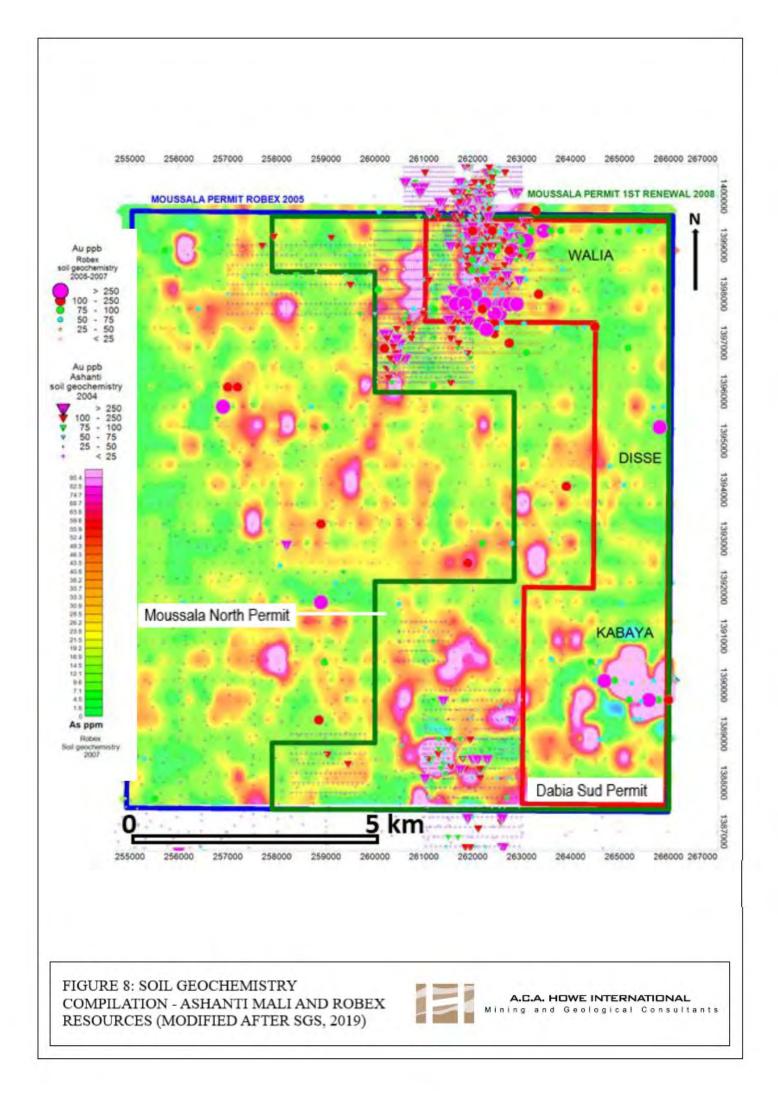
6.4. SYSMIN GEOPHYSICAL SURVEY (2000-2004)

A regional airborne geophysical survey (SYSMIN survey) was conducted by the Malian government between 2000 and 2004, producing a series of maps which demonstrate the major geological features of the Birimian window of Kéniéba. The magnetic gradient survey image shows pronounced northeast-southwest trending structures (Figure 7) east of the Senegal-Mali Shear Zone and extending through the Roscan permit area. A strong magnetic lineament extends from the area of the Boto deposit through Roscan's Kandiolé West permit. A similar strong magnetic lineament extends from Siribaya (IAMGOLD) to the south of the Kandiolé Project through Mankouké South, Central Mankouké and Kabaya, to the Seko Project (Oklo Resources) to the north. The low-magnetic cores to the lineaments are thought to be associated with hydrothermal alteration and magnetic destruction along fault zones.

6.5. ROBEX RESOURCES INC (2005-2014)

The Canadian company Robex Resources was granted the 134 km² Moussala exploration licence in July 2005. This permit, valid for 3 years, was renewed twice and each time the area was reduced by 50% to 67 km² and 33.9 km². The permit expired in September 2014 (Robex, 2014).

In 2007, Robex completed a permit-scale soil sampling programme on a grid of 400 by 200 m (Figure 8). Soil samples were analysed for gold and arsenic by ITS in Kayes. Geomorphology and regolith mapping were completed for the entire permit using aerial ortho-photos and satellite data.


Robex's soil sampling results generally appear to confirm the results reported by Ashanti Mali. Importantly, the survey by Robex Resources identified anomalous results over the previously undiscovered Kabaya Deposit, including two samples in excess of 250 ppb Au approximately 1 km apart and other lower level anomalous assays. The grade contouring on Figure 8 shows an anomalous area of approximately 1,600 m north-south and 1,200 m east-west, compared to the 900 m north-south and 600 m east-west in the 2019 historical resource model (Section 6.6).

In addition, Robex's results at Walia are coincident with Ashanti Mali's results in this area. Further to this, in the area between Ashanti Mali targets M1 and M2, Robex's results are consistently above 250 ppb Au, extending the footprint of the Walia area to 2,400 m north-south and 1,500 m east-west. This represents a larger footprint with significantly more highly anomalous assays than were identified prior to the discovery of the Kabaya Deposit. Also, in this area, ACA Howe's satellite image interpretation identified a clay-iron anomaly (Target 4) associated with an east-northeast trending structure in the Moussala North permit. The clay-iron anomaly extends onto the area between the M1 and M2 target areas. In addition, north-northeast and east-northeast trending faults intersect in close proximity to the zone between the M1 and M2 targets. An orpaillage site at Walia is shown on Figure 6, along with three sites further to the east along the east-northeast trending structure.

Another area of interest identified by the Robex survey is the Dissé prospect, where three anomalous soil sample results were returned. ACA Howe notes that an east trending structure interpreted from satellite data is intersected by a northwest trending tournalinised sandstone mapped by the BRGM just to the south of Dissé. The tournalinised sandstone continues through the main anomalous zone identified at Dissé.

The Dissé prospect is also in close proximity to Oklo Resources' Dissé prospect, around 800 m to the southwest. Oklo Resources' Dissé prospect appears to be on a west-northwest trend which likely intersects the east-northeast trending fault to the southwest of the main anomalous area at Roscan's Dissé prospect, in a similar location to the tourmalinised sandstone described above.

In 2007, Robex excavated 5 trenches at Walia with a total length of 777 m. The trenches aimed to follow-up on anomalism identified in the soil sampling programmes. Significant results of the trenching are shown in Table 9.

TABLE 9.SIGNIFICANT INTERSECTIONS IN TRENCHES AT WALIA (ROBEX, 2007)					
Trench ID	Interval Length (m)	Grade (g/t Au)			
MS2007TR001	18	0.25			
MS2007TR001	6	0.63			
Including	2	1.47			
MS2007TR001	2	3.30			
MS2007TR002	30	0.21			
Including	2	1.07			
MS2007TR005	12	0.15			
MS2007TR005	20	0.17			
Including	2	0.66			

Three trenches were dug by Robex in 2012 in the Kabaya area for a total length of 450 m. Intersections of 106 m at 0.46 g/t and 4 m at 1.16 g/t were reported. A further three trenches were dug in the same area in 2013 for a total length of 215 m. Results reported include 60 m at 3.92 g/t Au and 50 m at 1.80 g/t Au.

During 2013 to 2014, Robex drilled 5,256 m in 91 aircore drill holes. The holes were drilled at an azimuth of 270° with a dip of -50° and had an average depth of 58 m. 5,149 samples were sent to ALS Mali in Bamako to be analysed for gold by fire assay on a 50 g pulp. Lithologies described in the drilling are as follows:

- Laterite.
- Yellow clay.
- Green clay.
- Siltstone.
- Sandstone.
- Greywacke.
- Granite.

It is noted by Robex that the sediments occur in a band with general north orientation, dipping steeply to the east. They speculate that the mineralisation is of hydrothermal origin linked to oxidised saccharoid quartz veinlets. They state that the northeast oriented white quartz veins intersected are not mineralised.

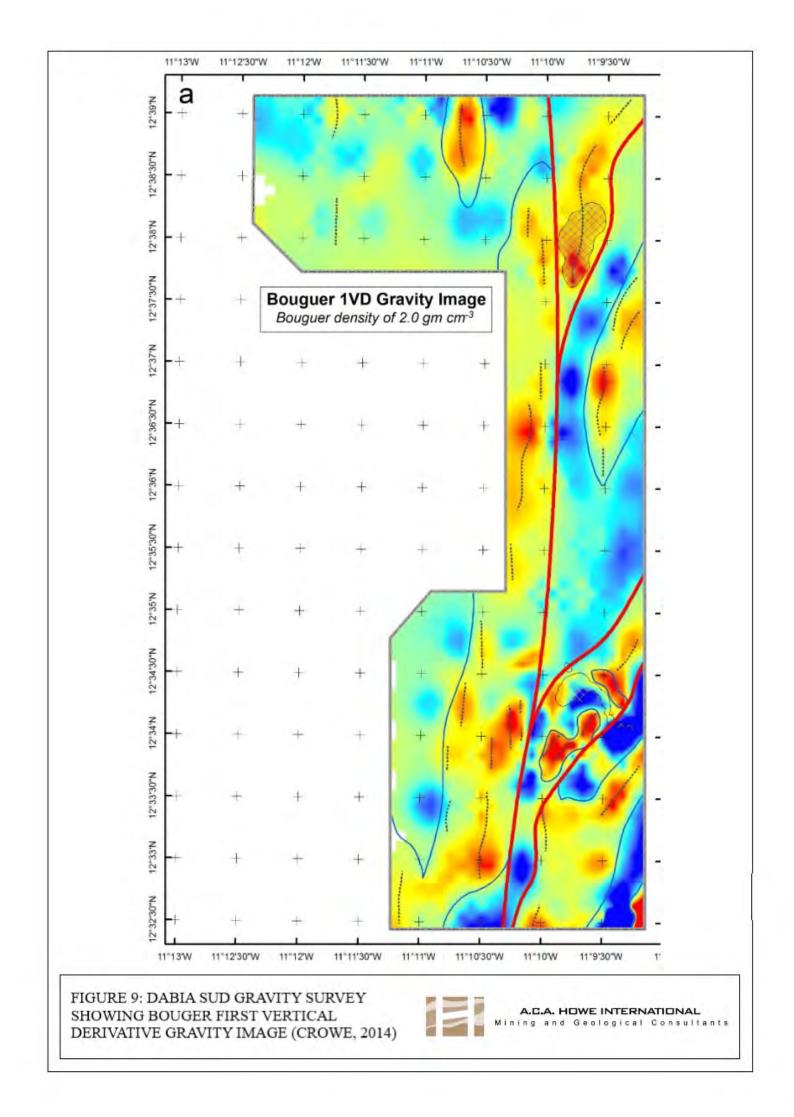
Also in 2014, a gravimetric survey was completed by Stewart Geophysical Consultants Pty Ltd on behalf of Robex. A regional grid of 800 m by 100 m was used in the wider permit area, with a closer spaced grid of 200 m by 50 m in the Kabaya area.

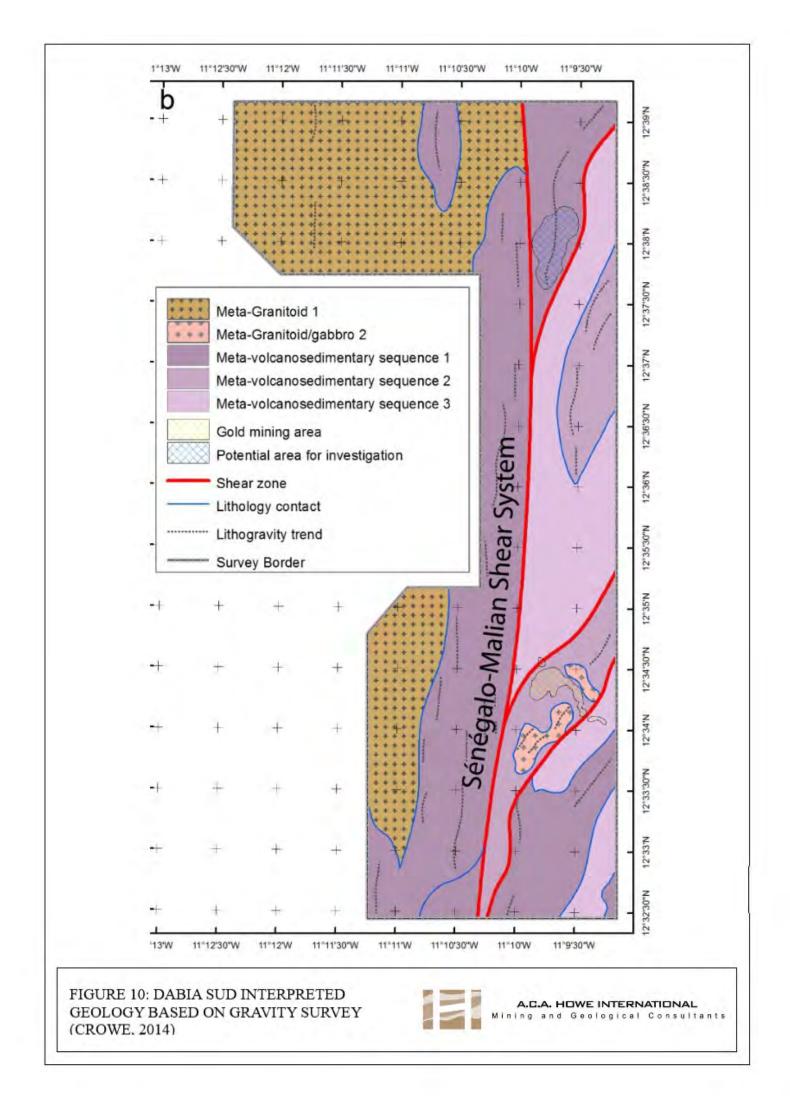
Interpretation by Warwick Crowe in 2014 on behalf of Haines Surveys is shown on Figures 9 and 10. A north-south trending break is visible in the central part of the area; with a banded/layered response in the east and a more homogenous response in the west. Crowe picks out a number of northeast-southwest trending shear zones splaying of the main north-south trend. He interpreted the geology in the eastern layered sequence as undifferentiated volcano-sedimentary units.

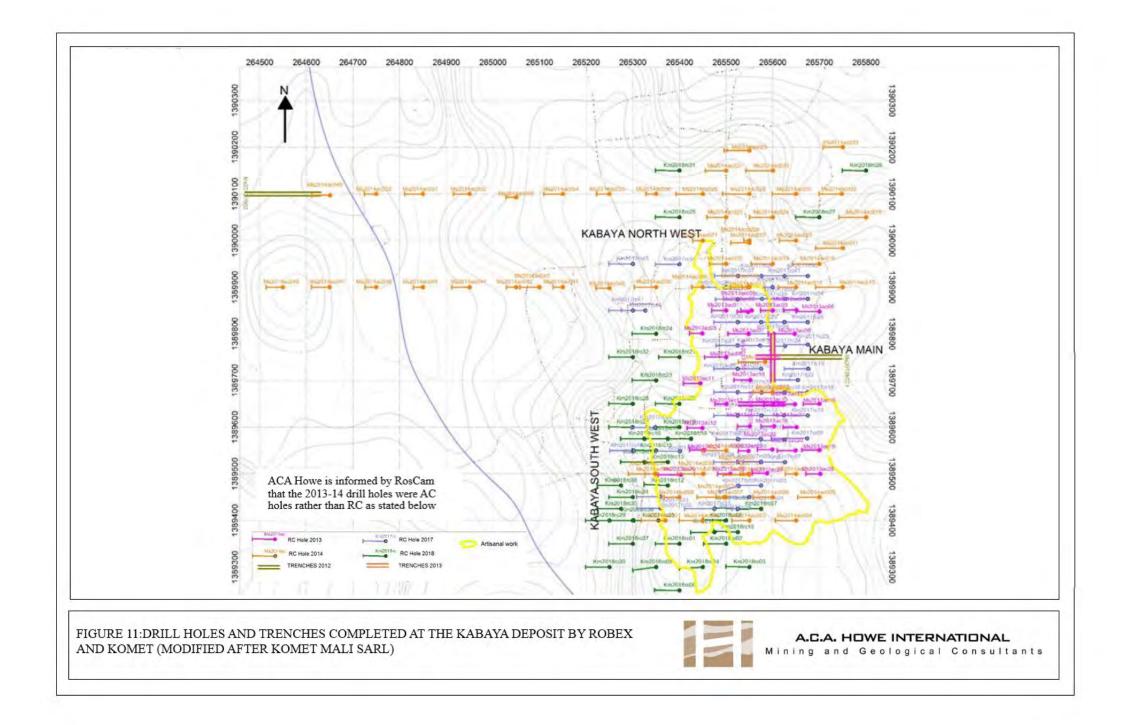
In the Kabaya area, surveyed at a higher resolution, Crowe describes the gravity trends as being incongruent with the regional northeast-southwest trends and interprets a concave feature around which bounding shear zones are wrapped. The concave features are interpreted as relatively rigid and dense bodies, such as a granitoid or gabbroic intrusive complex or volcanics. Crowe noted that the distribution of mineralisation appears to be associated with the concave structure.

6.6. SEMAKA SARL (2015-2016)

During the period 2015 and 2016 the Ministry of Mines granted a permit over the Moussala area to a local company, Semaka SARL.


6.7. KOMET RESOURCES INC (2017-2020)


The Dabia Sud permit of 35 km² (slightly increased compared to the last Robex Resources permit) was issued to Komet Mali Sarl, a fully owned subsidiary of Komet Resources Inc (Komet), in February 2017. During 2017 and 2018, Komet completed 91 four-inch diameter RC drill holes in the Kabaya area for a total of 7,274 m.

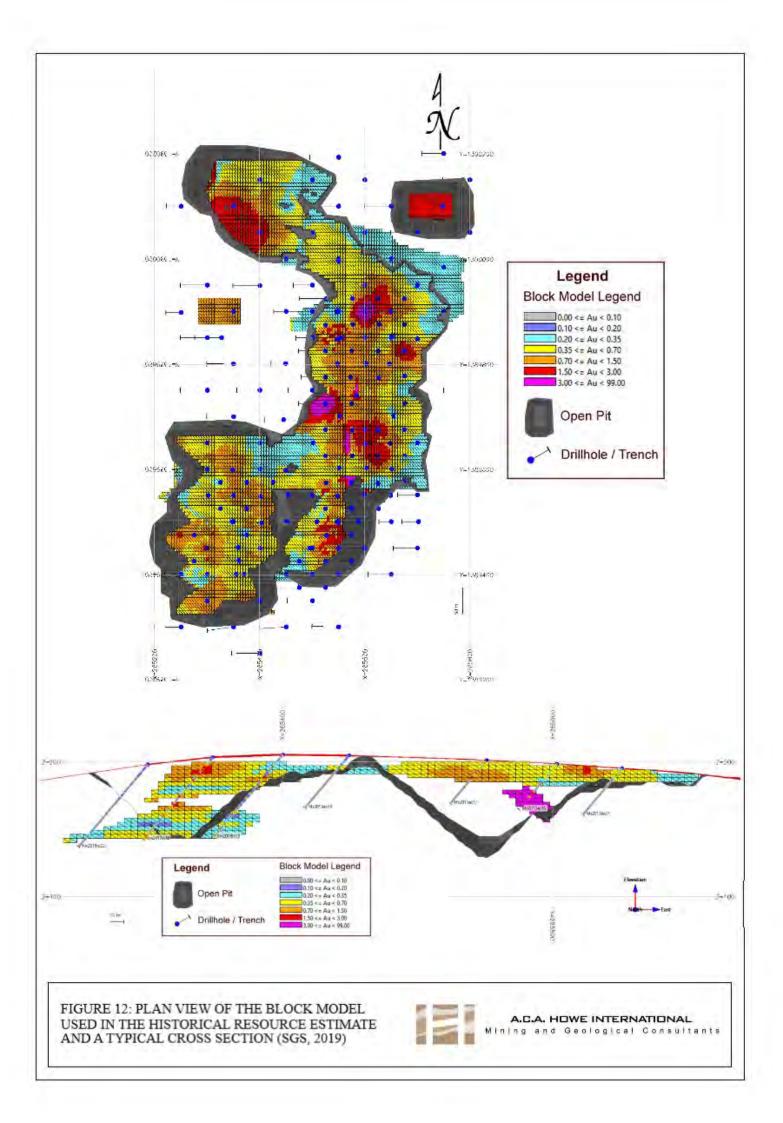

All holes were drilled with a dip of -50° and an azimuth of 270° (Figure 11), though only 12 holes were surveyed and only at the end of each hole (SGS Geological Services, 2019). Drill hole locations were recorded using a handheld GPS.

Sample weights were not recorded so no information is available on sample recovery. Geological logging and sampling were completed at 1 m intervals. A riffle splitter was used to split the samples into 1.5 to 2 kg batches for submission to the ISO 9001:2015 and ISO 17025:2005 accredited SGS Sarl Laboratory group in Bamako. Aliquots of 50 g were analysed by fire assay with an atomic absorption spectroscopy (AAS) finish.

In 2019, a mineral resource estimate (Table 10) was announced in Komet's news releases and the document "Dabia Sud Property, Kabaya Resource NI 43-101 Technical Report, Mali" by SGS Geological Services (SGS) (Qualified Person Yann Camus) was posted on their website and filed on SEDAR. The effective date for this historical mineral resource estimate was 7th January 2019.

TABLE 10.PIT CONSTRAINED MINERAL RESOURCES (BASE CASE) AS REPORTED BY SGS				
Classification	Tonnage (Mt)	Au (g/t)	Ounces (koz)	
Indicated	3.17	1.03	105	
Inferred	0.96	1.14	35	

* The historical mineral resource was estimated using a cut-off grade of 0.4 g/t Au and a bulk density of 1.7 t/m³.


A Qualified Person has not undertaken sufficient work on behalf of Roscan to enable the Company to classify this historical mineral resource as a current mineral resource.

The database used for the historical mineral resource estimate contained 12,815 assay results for gold as shown in Table 11. The modelling cut-off grade was 0.2 g/t Au and included intervals with a downhole thickness of at least 3 m. Mineralised volumes were modelled based on assay results only and were not guided by geological data. A topographical surface was created using data from the gravity survey and drill hole elevations were adjusted to match. The mineralised volumes were cut at the topographical surface. The block model is shown on Figure 12.

TABLE 11. DETAILS OF THE KABAYA DATABASE					
Data Type	Permit Owner	Number of Holes	Total Length (m)	Number of Assays	
AC	Robex Resources	91	5,256	5,149	
RC	Komet Resources	91	7,274	7,261	
Trenches	Robex Resources	5	515	405	
Total		187	13,045	12,815	

Grades were capped at 30 g/t Au. The assays inside the mineralised volumes were composited to approximately 2 m lengths, though the vast majority of the original samples (97%) have a length of 1 m. Grade interpolation was completed using the Inverse Distance Squared method with block sizes of 5 x 6.25 x 3 m.

The potential for economic extraction was demonstrated through preliminary pit optimisation using the following parameters:

- Gold price of \$1,350/oz (USD).
- Mining dilution of 10%.
- Processing recovery of 80%.
- Processing costs of \$4.50/t (USD).
- G&A costs of \$2.50/t (USD).
- Open pit mining costs of \$1.50/t (USD).

Given the recent date of the historical mineral resource estimate, it is considered by ACA Howe to be highly relevant to the project. To ACA Howe's knowledge, there is no more recent exploration data that supersedes the historical mineral resource estimate.

ACA Howe notes that the aircore data included in the historical estimate is from work completed by a previous owner (Robex). Robex submitted sufficient QA/QC samples (15% of the total) to the laboratory and SGS states that there were few or no failures. However, the following uncertainties with the extent of data verification are noted by ACA Howe:

- It is presumed that it was not possible to take independent verification samples of Robex's aircore samples during the SGS site visit.
- No details of any re-assaying of pulps or rejects potentially held by the original laboratory are given.
- SGS notes that checks were made on the original assay certificates but it is not clear whether certificates from the Robex Resources drilling or only the later Komet drilling were available.
- Only two of the aircore drill hole collars were identified in the field by SGS. For these holes, the correlation with the coordinates in the database was reported to be acceptable.

ACA Howe notes that further data verification may have been completed but is not fully described in the technical report.

Further to the above, SGS states that "there is not enough reliable information to design a geological model for the Kabaya gold mineralization system", implying that there is limited confidence in the continuity of mineralisation, which would potentially have implications on the category and size of the historical mineral resource estimate.

Another factor that may impact the category of the historical mineral resource is that the material recovered from RC drilling was not weighed by Komet, meaning that recoveries cannot be determined. Therefore, an assessment of the impact of any low recoveries on the assay grades cannot be made.

The permit is now owned by Roscan and further work will be required to verify the historical estimate and classify it as a current mineral resource. ACA Howe's recommendations for the verification of the historical estimate as a current mineral resource are discussed in Section 26.

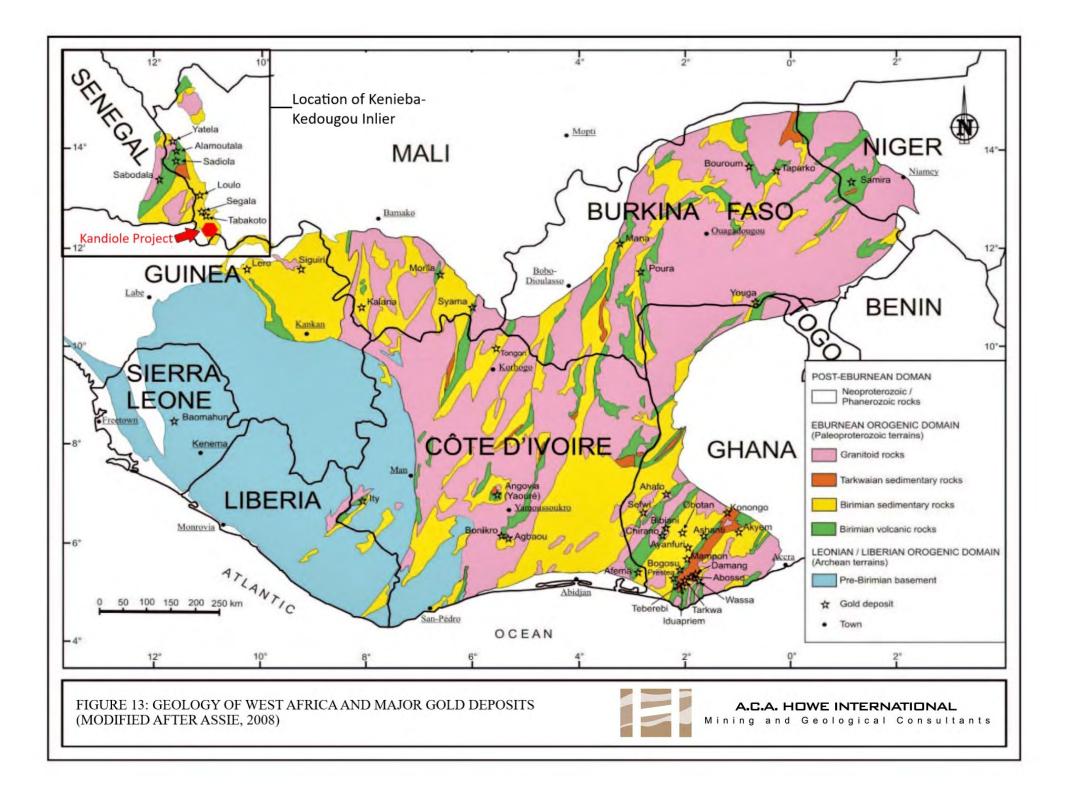
7. GEOLOGICAL SETTING AND MINERALISATION

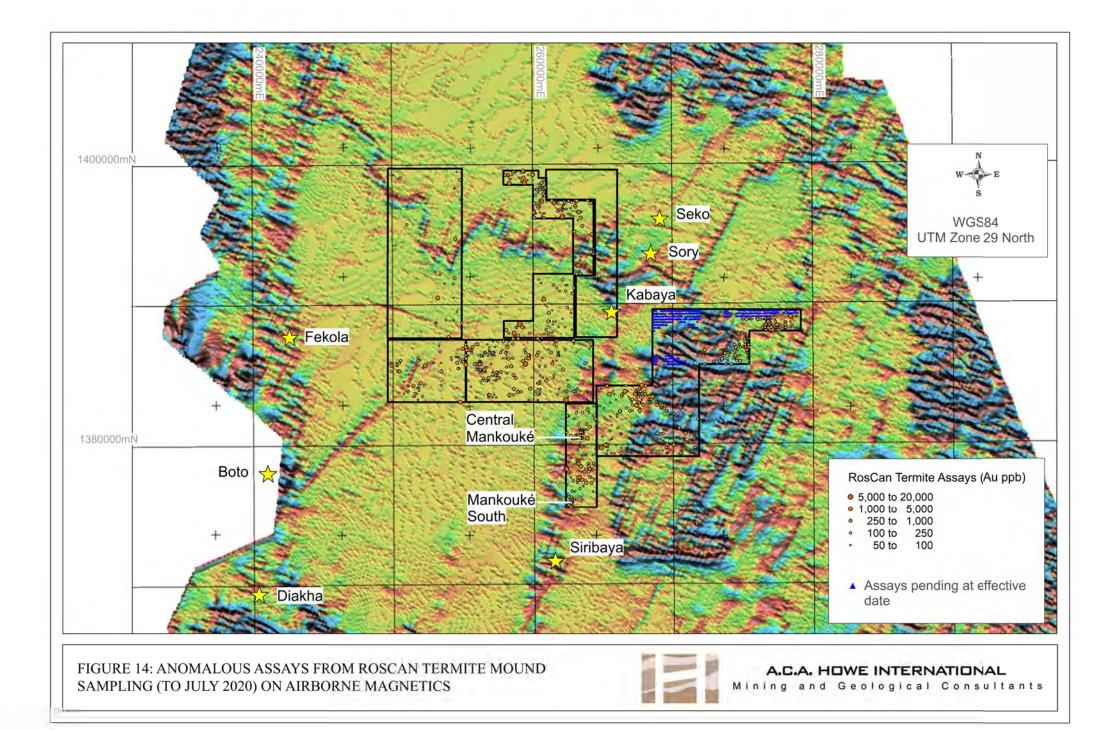
7.1. **REGIONAL GEOLOGY**

The Kéniéba region is situated within the Kéniéba-Kedougou inlier on the northeast flank of the Archaean Man Shield. The region is dominated by Lower Proterozoic Birimian metamorphic rocks, bordered to the east and southwest by Upper Proterozoic, largely unmetamorphosed clastic sedimentary rocks.

The Birimian sequence consists of three principal northeast-trending linear greenstone belts a few tens of km wide with lengths in excess of several hundred kilometres. The belts comprise metamorphosed volcano-sedimentary sequences that have moderate to steep dips and strike north to northeast in the vicinity of the Roscan licences. The major Senegal-Mali Shear Zone (SMSZ) marks a significant break in the geology from shelf carbonates with sedimentary sequences of greywackes, siltstones and tuffs to its west and clastic arenaceous and volcaniclastics of the Kofi Series to the east. The West Mali Gold Belt is hosted within the Birimian greenstone belts (Figure 13).

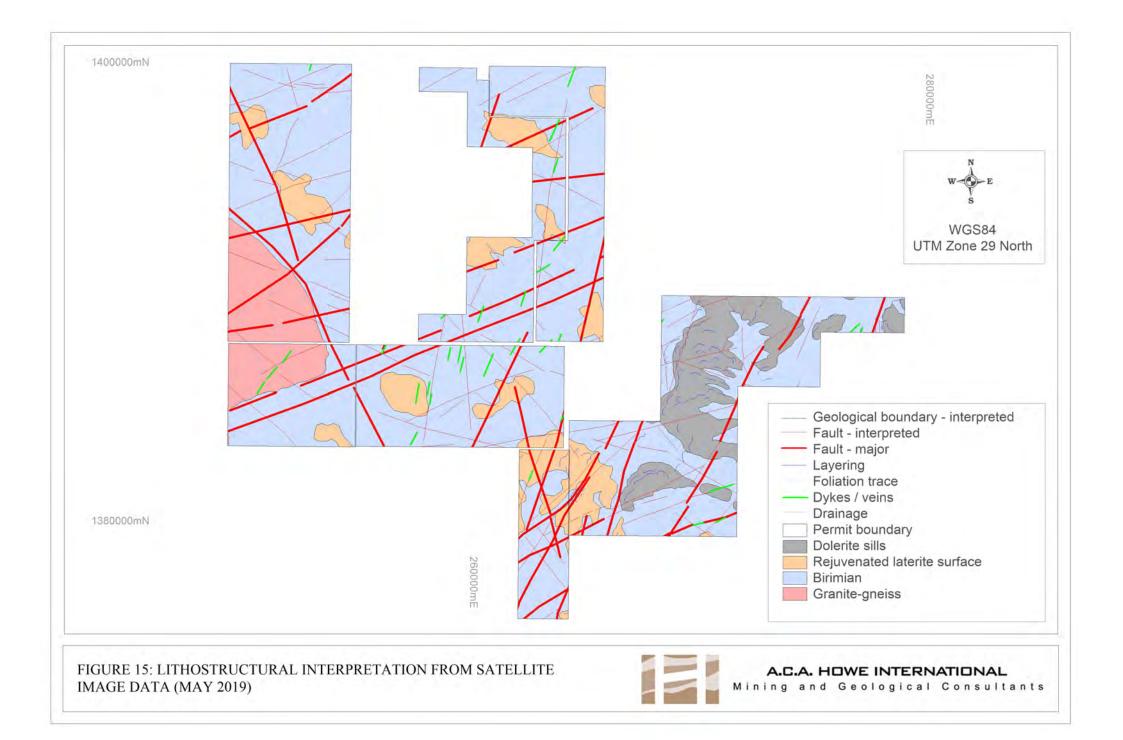
Both the sedimentary and volcanic sequences were intruded by irregular calc-alkaline granitic plutons, comprising diorite and granodiorite stocks, towards the end of the Eburnean Orogeny and these stocks are generally only weakly foliated. Significant quartz-tourmaline alteration is associated with granitoids in the Kéniéba-Kedougou Inlier.


Proterozoic to Permian dykes also occur throughout the region. The airborne magnetics show a dense swarm of broadly east-west trending sills interpreted as Central Atlantic Magmatic Province (CAMP) of Jurassic age through the centre of the Niala Permit and forming terraced ridges. Older north-northeast-trending dolerite and lamprophyric dykes, and numerous kimberlitic diatremes, cut all of the Precambrian formations. The older northeast-trending structures may carry gold mineralisation.


Up to four periods of laterisation, dating from the Cretaceous to the Neogene, have been recognised across the region. Where preserved the laterite thicknesses can range from around 5 to 15 m and the saprolite profile can extend to vertical depths in excess of 50 m.

The Roscan permits occur within the southeastern portion of the Kéniéba inlier, which is unconformably overlain in the region by Upper Proterozoic sandstones that form the prominent Tambaoura escarpment north of Dabia village and the RN24, and comprise sub horizontal sandstones, orthoquartzites and conglomerates. The local Birimian lithologies comprise volcanicdominated clastics and deep water, continental slope turbidite sediments. Reported volcanic formations comprise mafic to felsic tuff and their metamorphic equivalents.

The regional airborne geophysical survey (SYSMIN survey) conducted by the Malian government between 2000 and 2004 produced a series of maps which demonstrate the major geological features of the Birimian window of Kéniéba. The magnetic gradient survey image shows pronounced northeast-southwest and north-northeast/south-southwest trending structures (Figure 14) east of the SMSZ and through the Roscan project area. All the major gold deposits of Yalea, Gounkoto, Tabakoto, Segala and potentially Fekola are spatially associated with these generally northeastsouthwest subsidiary structures splaying off the main SMSZ. Mesozoic doleritic dykes and sills may be intruded along these prominent crustal weaknesses.


7.2. PERMIT GEOLOGY

A study of satellite image data covering the Roscan permits and surrounding area by ACA Howe in 2019 (Figure 15), identified evidence of Birimian lithologies in all permits. Extensive areas of rejuvenated laterite were interpreted with initial formation in the Upper Proterozoic and further laterisation in the Post Mesozoic. To the west, a granite-gneiss intrusion is interpreted bounded on the eastern side by a northwest trending fault. Interpretation by previous explorers recorded a significant area of dolerite intrusions in the Niala Permit to the east of the project area. The magnetic signature and high-resolution satellite imagery suggests that the older sediments in the area are intruded by a complex of sills.

It is noted that the study was desk-based only and requires field checks to confirm the interpretation. The lithologies identified are described further in Table 12.

TABLE 12. SATELLITE IMAGE EXPRESSION OF GEOLOGICAL UNITS				
LITHO-UNIT	LITHOLOGY	IMAGE EXPRESSION		
Lat	Rejuvenated Laterite surface	Pale pinkish brown mottled surfaces with sharp low scarps at edges, surfaces appear to be almost horizontal but cut by major drainages. This surface is best developed in the south with more scattered remnants to the north.		
D Permian-Jurassic	Dolerite	A broad area of outcropping dolerite sills is identified in the Niala permit. In addition, four segments of dykes have been located in the northeast of the area, where they form low northeast to north-northeast trending ridges. They could be part of a larger dyke swarm occurring along structures in this part of the area.		
Bir Birimian	Schists, phyllites, greywacke, sandstones & marbles	Extensive weakly foliated unit found across the northern & central part of area. Generally low- lying with low relief and strong vegetation giving it a mottled appearance.		
Ggn Archean	Granite-gneiss	Appears as a mottled light pinkish zone in the Segundo South and Kandiolé West permits on the Aster 742 image, extending to the west to the Fekola Mine.		

The main directions of faults and fractures identified in ACA Howe's satellite image interpretation study are as follows:

- North-northeast to north-east
- Northwest
- East-northeast
- East-west and east-southeast.

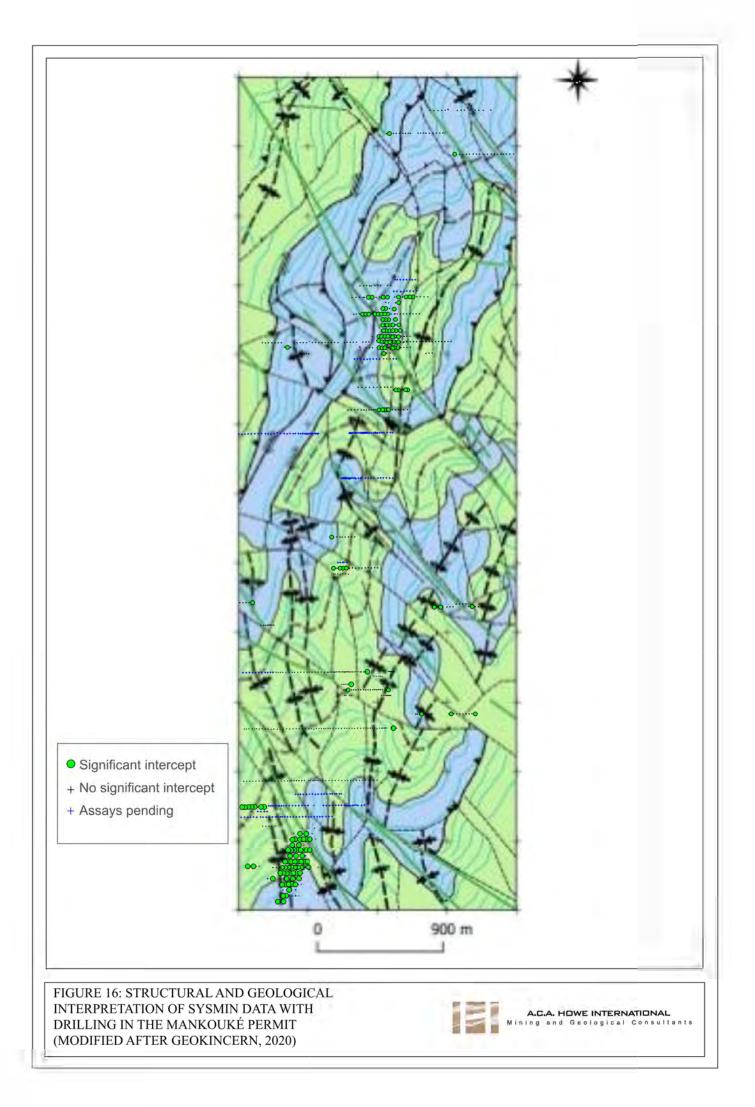
Sinusoidal swings are observed in some in some of the faults, which are mimicked to a certain extent in the foliation trends, and these appear to indicate dextral lateral movement. The following geological history of the region has been developed in order to understand the occurrence of gold mineralisation in the area. Beginning at the oldest events the key features appear to be as follows:

- **Pre-Birimian:** Basement gneisses have been located in the western permits of the Kandiolé Project.
- Lower Proterozoic: Deposition of clastic, pelitic, carbonate and volcano-sedimentary units.
- **Proterozoic (2,000-1,800 Ma Eburnean):** Burial and metamorphism (green schist facies) of sediments during Eburnean orogeny to form quartzites/schists/phyllites/greywacke and marbles etc. Repeated syn- and post-orogenic gold mineralisation events.
- **Upper Proterozoic:** Uplift erosion and peneplanation of Birimian rocks with possible formation of a crusted surface similar to modern laterite. Physical and chemical weathering of rocks with the migration of mineralisation through the weathered zone.
- Upper Proterozoic to Carboniferous: Deposition of clastic sediments (mainly sandstones) of the Taoudeni Basin.
- **Permian to Jurassic:** Faulting and fracturing or rejuvenation of earlier structures and intrusion of dolerite dykes and stocks etc. Potential for further reactivation of older mineralised faults and shears plus the intrusion of unmineralised dykes and stocks. An area of outcropping dolerite sills shown as being of Mesozoic age is located in the Niala permit.
- **Post Mesozoic:** Uplift and erosion of the Taoudeni sandstones and eventual rejuvenation of the pre-Taoudeni surface. (The timing of this erosional phase is unknown as there are no recent sediments or alluvium in the study area, but there are Cenozoic sediments elsewhere in Mali).
- **Quaternary:** Development of modern laterite. Further potential for the remobilisation of mineralisation through the weathered zone.

7.3. MINERALISATION

7.3.1. OVERVIEW

To date the most significant mineralised zones have been encountered within the Mankouké permit of the Kandiolé Project, including at Mankouké South and Central Mankouké. In addition, the Kabaya deposit and Walia and Dissé prospects are located in the Dabia Sud permit which Roscan acquired in July 2020. There are further less well drilled areas where mineralised zones have been identified by initial AC drilling in the Moussala North and Kandiolé North permits.


ACA Howe's satellite image interpretation described in Section 7.2 indicated several fault trends, or conjugate sets of faults, with some faults displaying sinusoidal-type swings. The same study also identified lateral movement on some of the fault structures. The airborne magnetic image, shown in Figure 14 previously, highlights the prominent north-northeast/south-southwest trending magnetic lineament which appears to be the dominant structure controlling mineralisation from Siribaya in the south, progressing through Mankouké South, Central Mankouké, Kabaya and on through Oklo Resources' Sory and Seko deposits.

This structural trend is typical of the regional second order structures that splay off the Senegal Mali Shear Zone and is important because of its association with most of the major gold deposits in the eastern and southeastern parts of the Kédougou-Kéniéba inlier. Such a structure can be traced through the Kandiolé Project from IAMGOLD's Siribaya deposit, 4.5 km to the south, through the Mankouké permit where there is a directional swing from a predominantly north-northeast trend to a northeast trend. The directional change corresponds with many small lateral offsets, most prominent on the convex side of the bend. These late displacements which manifest as magnetic breaks along the regional Siribaya-Kabaya lineament may have focused hydrothermal activity along pipe-like intersections with the regional second order shear structure. The local deposits of Siribaya, Kabaya, Sory and Seko all correspond with visible offsets in the regional structure, as does mineralisation at Mankouké South and Mankouké Central.

Interpretation of the SYSMIN magnetic data by Geokincern Ltd (Geokincern) (2020) uses geophysical domains to create broad lithological units based on their geophysical signatures for the Mankouké area. ACA Howe has identified that mineralised drill holes correlate strongly with the intersection of small lateral offsets along late northwest to southeast trending faults and these interpreted major lithological boundaries. Such offsets are interpreted by ACA Howe as a late stage of deformation linked to shearing along the larger regional structure which controls gold mineralisation locally.

Geokincern (2020) demonstrate that zones of high magnetic gradients often coincide with the mineralised breccia zones such as in Section 1380550N (Central Mankouké). The significant intercepts of Mankouké South and the Kouroukaida orpailleur workings also fall on such an interpreted lithological boundary (Figure 16). ACA Howe's review of drill core, core photos, geological logs and cross sections corroborates the importance of this lithostructural relationship at Mankouké while other structural controls such as fold axes and late faults are likely to have an important role in localising the mineralisation. If the pending assays confirm this relationship, then further such modelling of the geophysical domains is recommended to target similar offsets along this interpreted lithological boundary. Gravity surveys at the neighbouring Dabia Sud Permit reveal bounding or concave structures that appear to wrap around more rigid bodies and control mineralisation. This is similar to ACA Howe's satellite interpretation, which identifies sinusoidal faults controlling mineralisation.

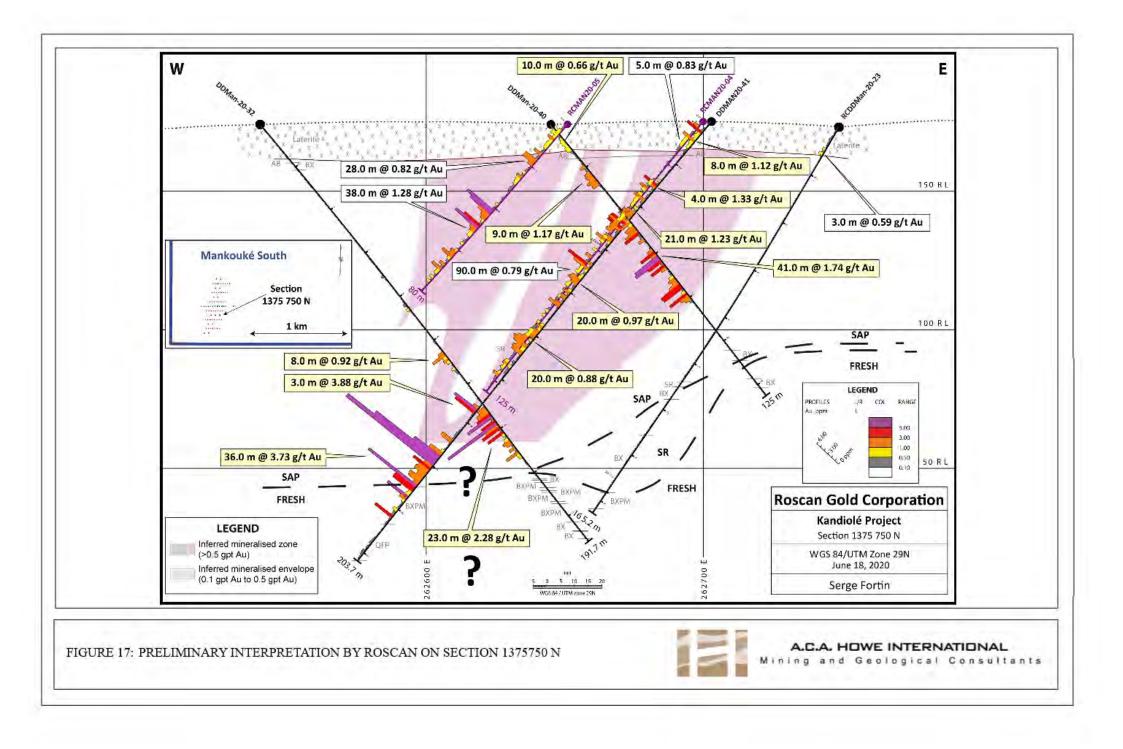
7.3.2. MANKOUKÉ SOUTH

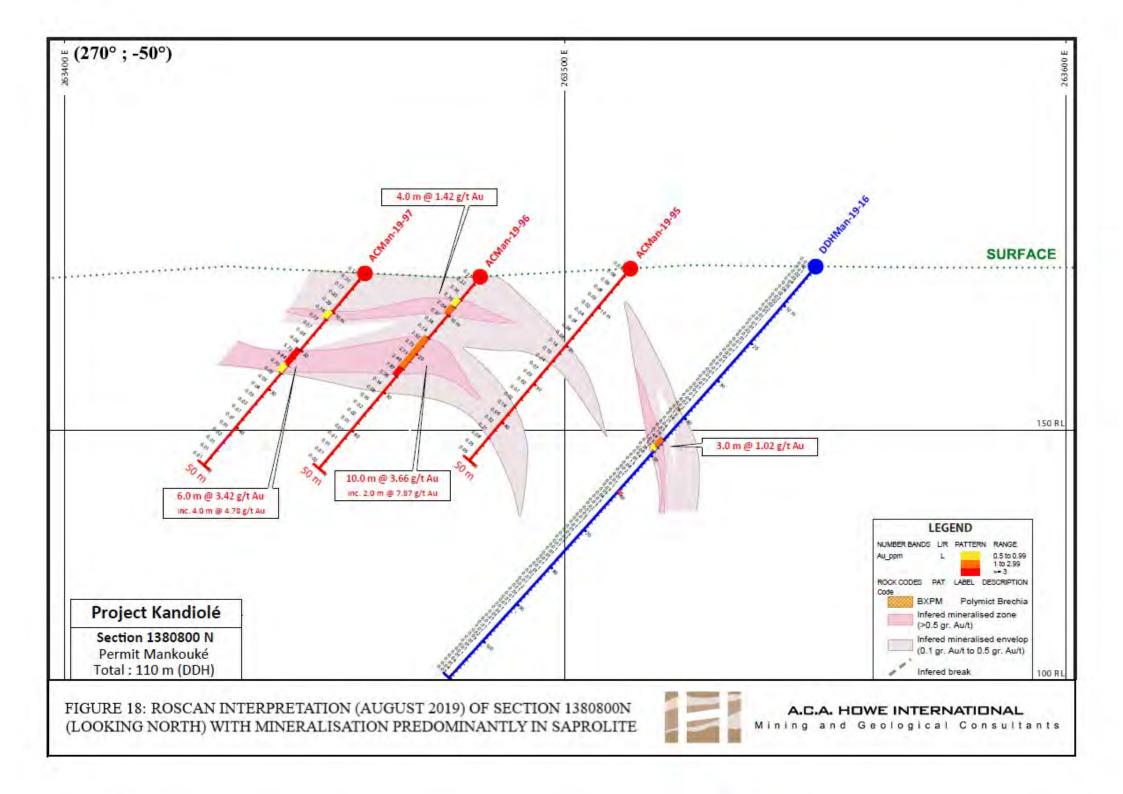
A significant amount of work has focussed on Mankouké South since 2019 when a single AC drill fence discovered mineralisation to 36 m depth on Section 1375850N.

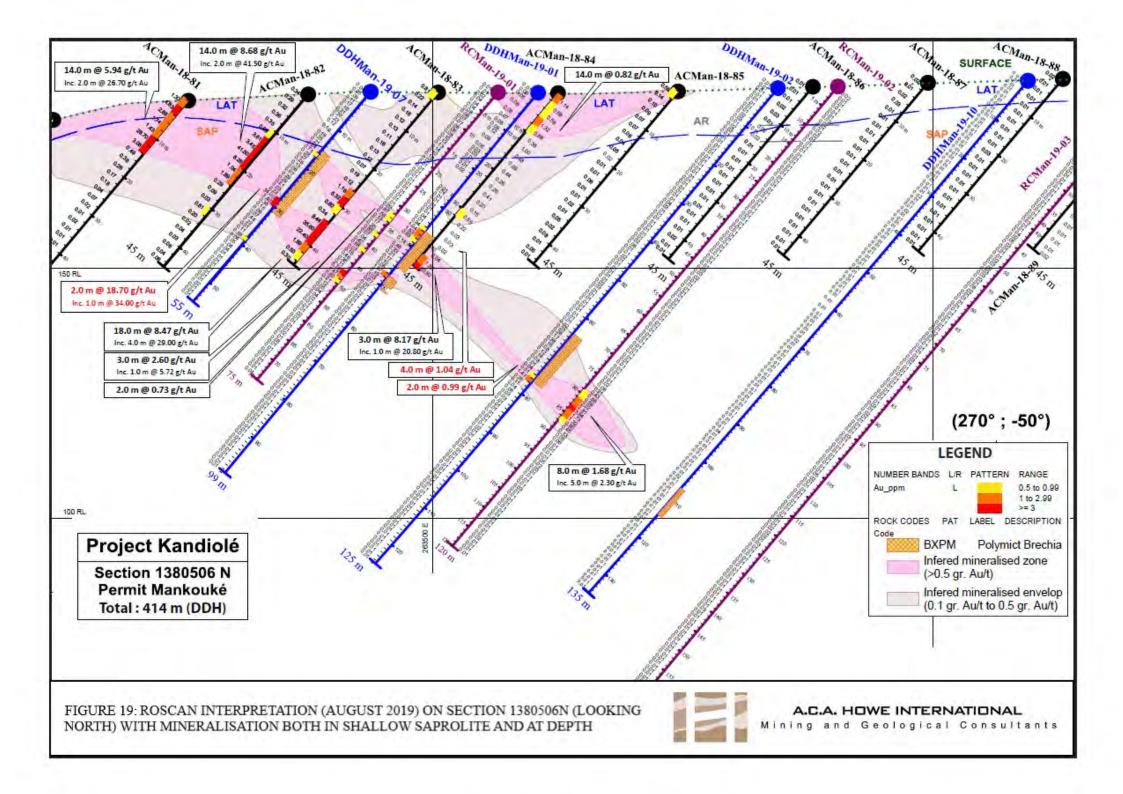
2020 drilling has effectively traced the shallow mineralisation for some 600 m strike distance along the axis of a low north-northeast to south-southwest trending ridge that extends to the Falemé River. The mineralisation identified to date extends from north of Section 1376000 N (DD holes DDMAN-20-24 and DDMAN20-31) in the north and to the south of Section 1375750 N (DD holes DDMan-20-32, DDMan-20-40, and DDMan-20-41) in the south. Mineralised zones with grades above 0.5 g/t Au have been intersected down to 120 m below surface and another grade of 0.49 g/t Au at 155 m below surface.

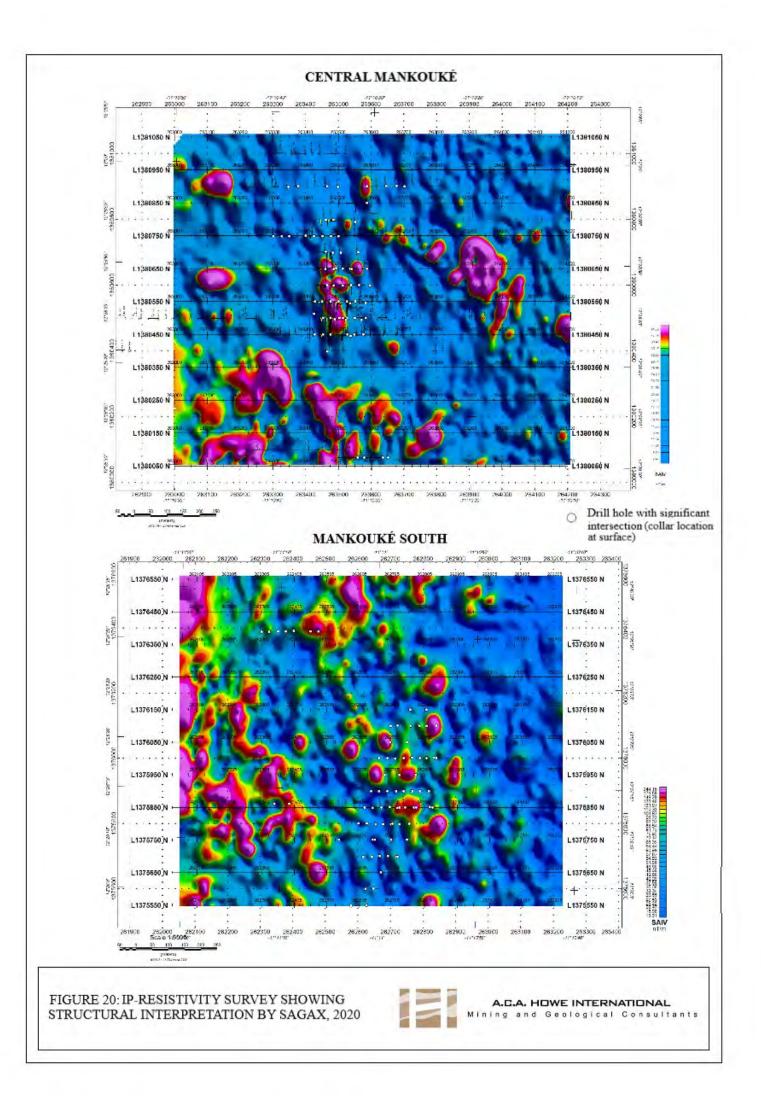
The steeply-dipping deeper mineralisation extends to approximately 135 m depth below surface on Section 1375750 N (Figure 17) centred around 262600mE. 300 m further north the mineralisation shifts east to 262700 E on Section 1376050.

The drilling has delineated steeply-dipping, stretched funnel-shaped shoots, with the long axis parallel to the regional structural trend. Grades tend to be highest towards the centre of the funnel structures with both grades and thicknesses petering out along the long axes. Recent drilling demonstrates how mineralisation either bottoms out or ends abruptly in thicker dark grey to black pelitic successions to the east of Mankouké South, with some gold remobilisation apparent in the shallower saprolite levels. Regional strain may have been focused along the structurally weak contact between the more competent greywacke packages and the softer pelite sequences, providing a combination of structural and lithological control. High rheological contrast between the sequences would foster preferential fracturing of the greywacke units allowing mineralised fluids to infiltrate along damage zones close to the contact. This is seen in the recent core where mineralisation is often best developed close to these contacts.

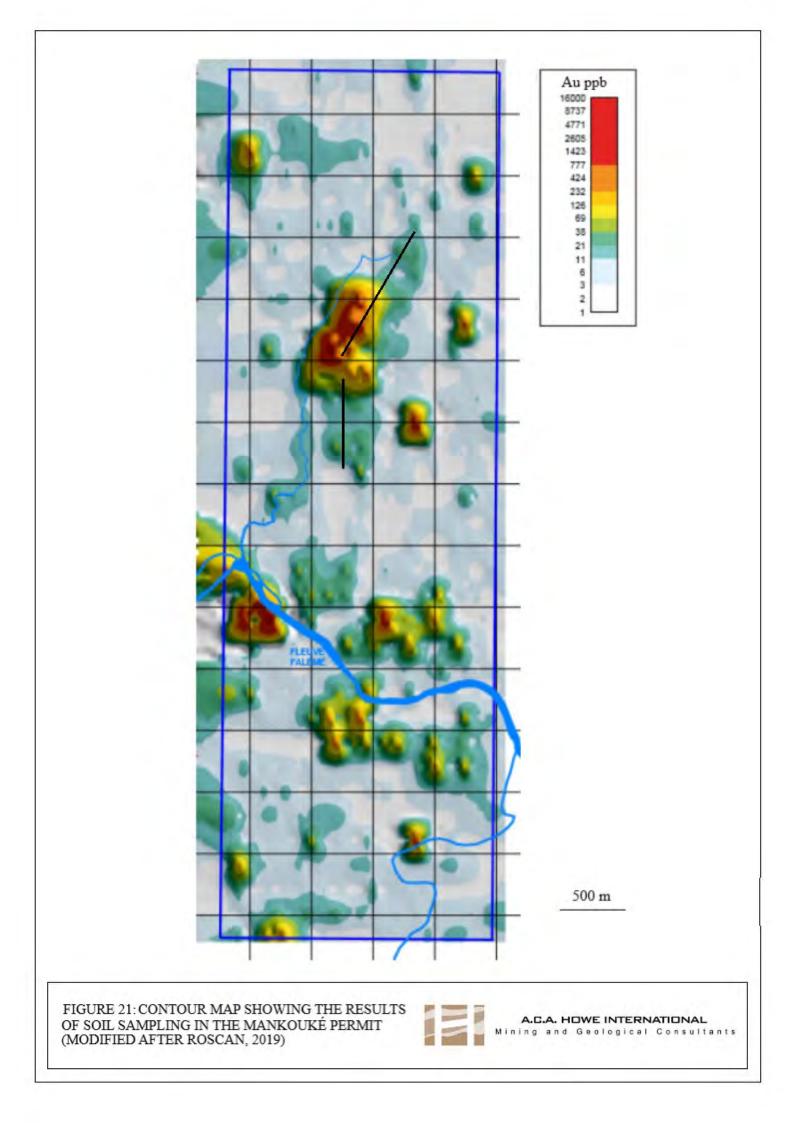

A series of isolated ground magnetic highs appear to fall on convergent north and northwest trends, though the data are very noisy. The mineralisation identified to date follows the more northerly trend which may represent the lithostructural control to the mineralisation.


AC drilling completed around 400 m to the west-northwest of Mankouké South suggests that mineralisation may have been displaced by a west-northwest trending fault shown in the regional SYSMIN survey. This requires further testing through drilling.

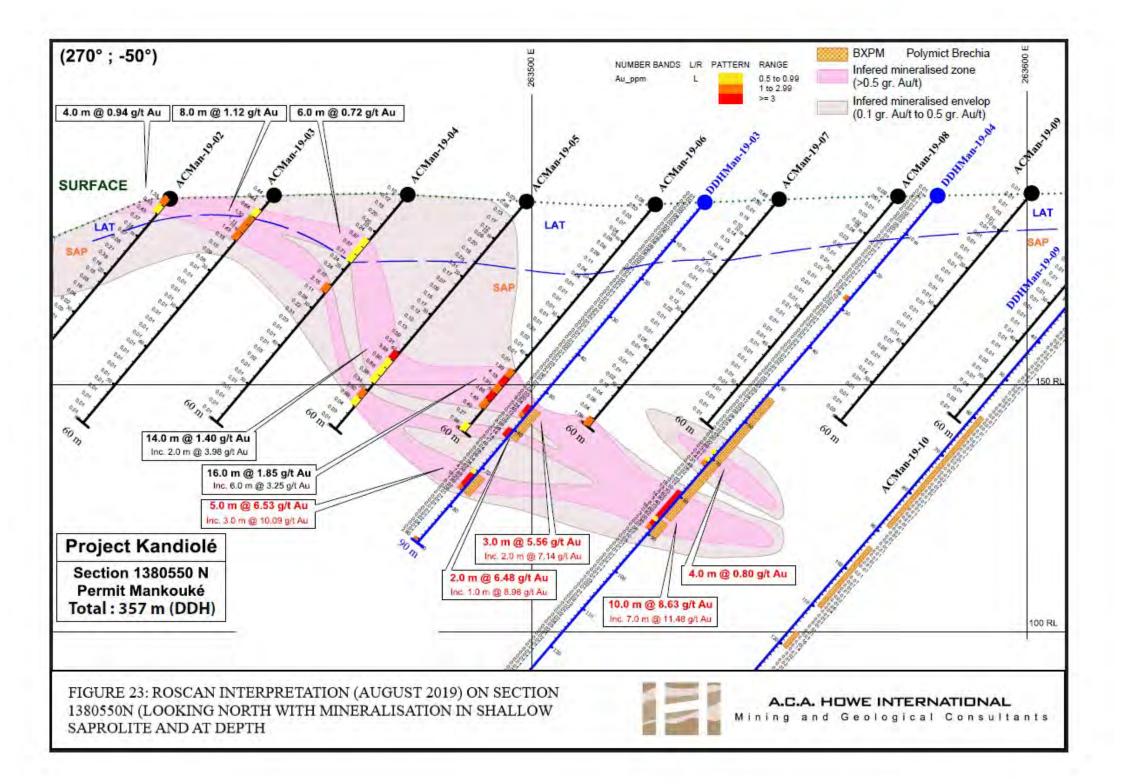

7.3.3. CENTRAL MANKOUKÉ


Drill holes at Central Mankouké have intersected significant mineralisation within saprolite and breccia in an area with a footprint of around 500 m by 50-100 m depending on the degree of remobilisation within the saprolite. The continuity of mineralisation within this zone requires further investigation through closer-spaced diamond core drilling. Mineralisation has been identified from surface down to 80 m below surface. The mineralisation pinches out to the north and south where it is confined to the shallow saprolite, as shown in Section 1380800 N (Figure 18) and Section 1380506 N (Figure 19). ACA Howe notes that the known mineralisation lies on the eastern flank of an isolated magnetic high (Figure 20).

The Kouroukaida artisanal workings 500 m to the south of Central Mankouké provides a 3D visual of the deposit geometry on the ground. As with Section 1380450 N, more extensive shallow workings are seen in the laterite cap and upper saprolite zones with constricted steeply-dipping quartz vein structures chased by narrow shafts at depth. Section 1380800 N shows a similar geometry to Kouroukaida with shallow mineralisation preserved in the upper 25 m of the saprolite profile and a thin deeper stem preserved at depth centred around 263,500 E. Over the next few drill lines the AC holes intersect the mineralisation migrating eastward suggesting dextral movement, with Section 1380850 N intersecting shallow saprolite mineralisation in its most easterly hole ACMan-19-98 (4 m @ 5.97 g/t Au including 2 m @ 11 g/t Au) close to 263,600 E. A further 50 m north on Section 1380900 N the mineralisation has shifted east again to between 263,600 E and 263,700 E.


These small incremental displacements to the mineralisation are considered analogous to the lateral offsets seen in the regional structure, as it changes direction from a predominantly north-northeast trend to a northeast trend. The next drill fence to the north, Line 1381000 N has missed the mineralisation completely as the regional structure has by now migrated too far east. The gold in soil anomaly map for Mankouké shows a similar change in trend at Mankouké Central, with a southern tail to the main anomaly trending broadly north-south and the northern tail trending northeast-southwest (Figure 21).

The mineralisation geometry at Central Mankouké may be considered to have a western and an eastern component. The western component represents the weathered surface of a north-south trending, moderately east-dipping, constricted shear system with mineralisation primarily hosted in breccias and remobilised within the saprolite profile. When higher in the laterite profile, this manifests as a shallow, near flat-lying, mottled, saprolite-hosted mineralised horizon. The mineralisation appears to accumulate at slightly different horizons within the saprolite which may be governed by several potential primary shoots of mineralisation and/or the intensity of weathering and remobilisation within the laterite profile. Based on the amount of drilling to date it appears that the higher the mineralisation is within the laterite profile the more time it has been subjected to intense weathering and potential remobilisation.


The eastern component of the Central Mankouké mineralised zone constitutes the steep feeder zone with less well-developed dispersion within the overlying saprolite (see Figure 22 for an example). A stronger hydraulic gradient to the west may have encouraged dispersion through the saprolite in this direction.

The feeder shoots to the main mineralisation are still poorly constrained and show variations in thicknesses where they have so far been encountered at depth (see differences between Section 1380506 N – Figure 19 above, above and Section 1380550 N – Figure 23 below). The Central Mankouké mineralised zone is located within a slightly elevated laterite plateau, with the collar for DDHMan-19-08 at 190.25 m elevation while the collar for ACMan-18-81 is at 181.73 m. The mineralisation of Central Mankouké has not yet been exploited by artisanal mining due to the hard laterite protective cover which has prevented exposure.

Grades and thicknesses are theoretical and not directly related to the Kandiole Project **Cross section view Discovery drillhole** Natural surface Secondary dispersion PRIMARY MINERALISATION Saprolite Saprock Key ppb gold 0-10 10-20 50 100 20 - 100 metres 100-500 Vertical = horizontal >500 FIGURE 22: CROSS SECTION SHOWING A TYPICAL SAPROLITE MUSHROOM PROFILE IN THE A.C.A. HOWE INTERNATIONAL WEATHERED ZONE (MODIFIED AFTER MARMOTA LTD, 2017) Mining and Geological Consultants

A polymictic breccia is described in the diamond drill hole logs wherever there is mineralisation. It is evident the breccia played an important role in the mineralisation process and may have produced high-porosity zones which enabled the ingress of auriferous-rich fluids. The hanging wall to the mineralisation in Line 8, Section 1380550N, shows fine-grained, thinly laminated clastic sediments, while the footwall shows light grey, smectite-rich, argillaceous material. The mineralisation comprises relict oxidised sulphides in shale partings along the selvages of quartz veins (Figure 24).

Figure 24. Oxidised sulphides on shale partings along the selvages of thin quartz veins

The mineralisation is largely hosted in limonite-bearing polymictic breccia. The oxidation of sulphides in the weathered saprolite has released free gold which is being panned by the orpailleurs at Kouroukaida. The separation of free gold from the saprolite was observed by ACA Howe at the orpailleur workings at Site de Bilali in the Moussala North permit. It is likely that shearing has been focused along the structurally weak contacts between the continental-derived clastic material above and the more argillaceous material at depth. The softer shale would have taken up any strain during a shearing or faulting event (Eburnean orogeny-related) while the more brittle greywackes would readily shatter and break. Late reactivation from seismic events along this weakened crust could lead to polymictic breccia developing and providing a fluid conduit for focusing mineralised fluids.

Shales are often quite laterally-extensive, and there is evidence of a largely north-south traceable contact through the various Mankouké drill lines and visible on the ground 500 m south in the Kouroukaida artisanal shafts on the same easting. It is possible that this, now-tilted, shale contact provided the right kind of brittle-ductile rheological contrast conditions to enable a laterally-extensive, fluid conduit through the porous breccia zone, confined on either side by more massive continental clastic and argillaceous sediments. This suggests potential for continuity of the weathered mineralised saprolite and further primary, lithostructurally-controlled mineralisation at depth within the Mankouké permit. This model may also be repeatable elsewhere within the Kandiolé Project where the broader lithological boundaries can be identified, and just as importantly where this boundary is intersected by late faults.

There is potential for further mineralisation to the southwest of Central Mankouké, following the broad contact identified by Geokincern (2020), as the contact swings westward and back again to the workings of Kouroukaida (see Figure 16). ACA Howe notes that the drill line immediately south of

the Kouroukaida workings, Line 1379900N (Roscan's Mankouké AC Line 11), is at a much lower level (153 m elevation) than those further north on the higher laterite plateau (180 m elevation) suggesting that much of the mineralised saprolite has been eroded here. However, a broad ridge climbs northward from Line 1379900N towards Central Mankouké suggesting potential for further preserved saprolite mineralisation where the main contact can be traced. Mineralisation is continuous, at similar eastings to Central Mankouké, to the immediate south of Kouroukaida, on AC Line 11, between eastings 263425mE and 253500mE, albeit the laterite profile is considered erosional here, thus marking the southern limit to the Kouroukaida mineralisation.

7.3.4. DABIA SUD PERMIT

The Dabia Sud permit, acquired by Roscan in July 2020, includes the Kabaya deposit and the Walia and Dissé prospects. At the effective date of the report, Roscan had not conducted any exploration in the Dabia Sud permit so the following information is sourced from available reports for previous owners.

Exploration by previous owners was restricted to surface sampling and trenching at Walia and surface sampling only at Dissé. Additional information on Kabaya, Walia and Dissé is provided in Section 6.

SGS (2019) noted that the absence of outcrop and lack of core drilling made description of the mineralised zones at Kabaya difficult. The following is extracted from the Mineralisation section of the SGS report:

"Study of reverse circulation (RC) drill cuttings, artisanal gold pits and rejects and a few rare outcrops provide indications for a geological setting of quartz-vein/veinlets stockwork in a strongly weathered volcano-sedimentary sequence.

Additional geological information was provided by the ground gravity survey (Haines Surveys and International Geoscience, 2014). Part of this survey was specifically focused on the Kabaya gold prospect by tightening the grid to 200 x 50 m allowing a higher resolution data.

The gravity trends within the prospect show bended and/or concave features incongruent with the regional northeast–southwest trends (Figures 9 and 10). These structures are interpreted to represent relatively rigid and dense bodies, possibly an igneous complex of small intrusions or volcanic flows, around which, bounding shear fractures seem to be wrapped. There are indications that the distribution of mineralisation appears to be associated with these concave structures. Conclusion, the gravity results suggest a shear zone controlled geological context.

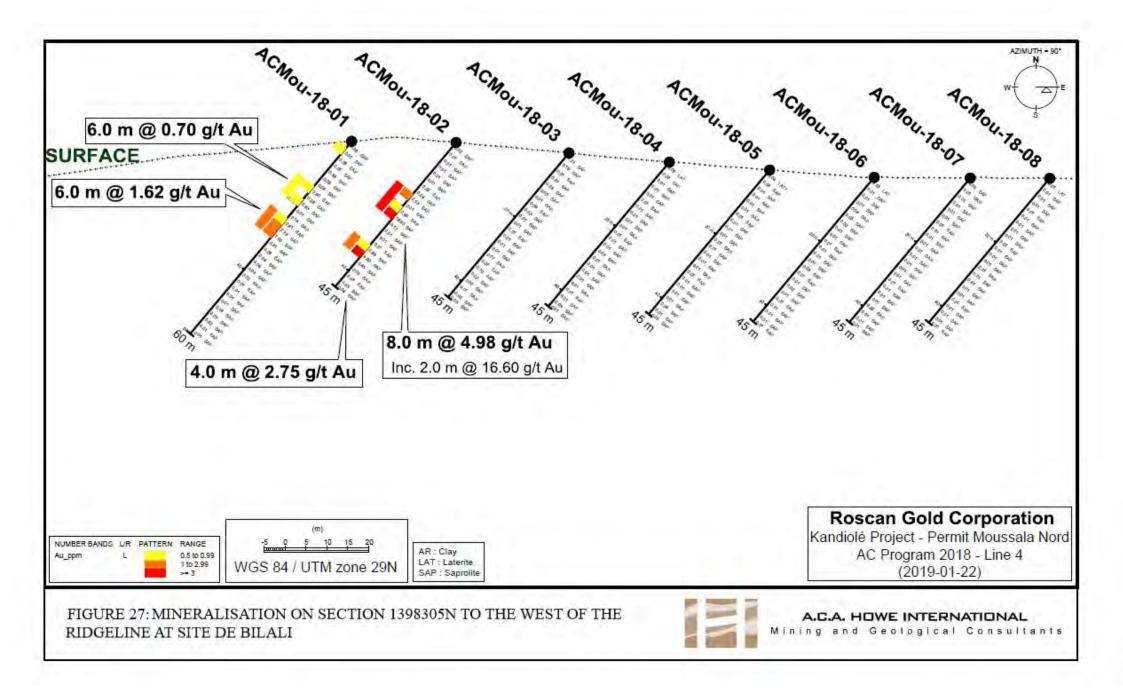
Modelling of the gravity data over the known mineralised area in conjunction with integrating more detailed data on local geology and the style and location of gold occurrences would provide for a better understanding of controls and associations of the mineralisation."

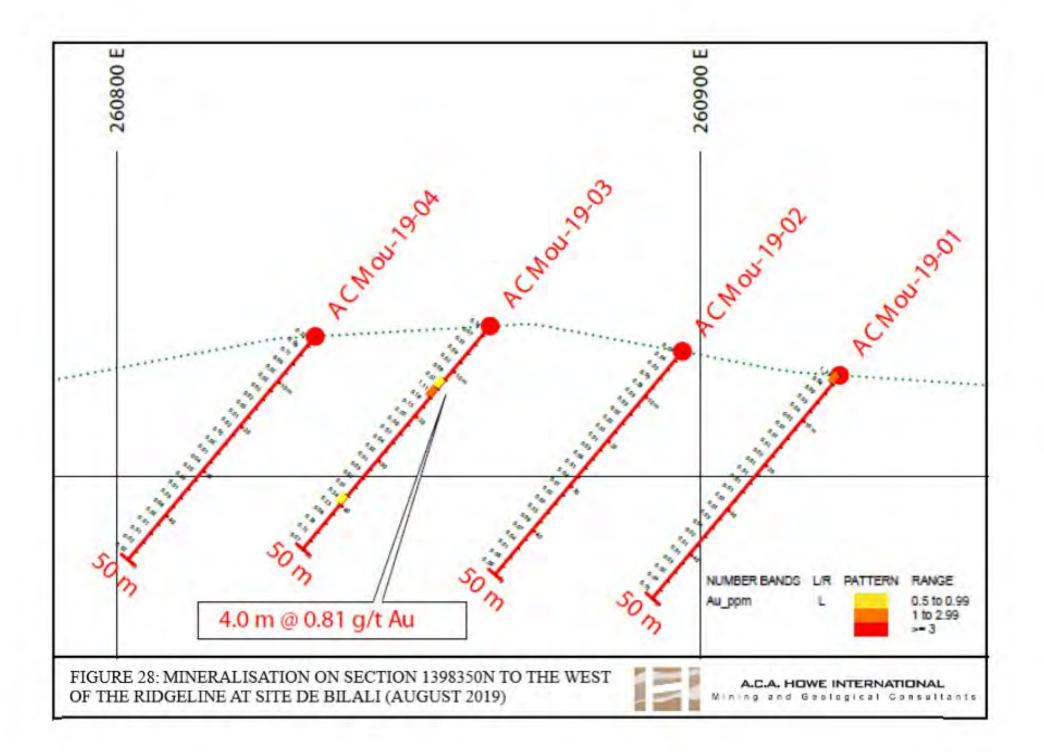
ACA Howe notes that similar structures to the shear zone identified in the gravity survey are visible in airborne magnetic imagery of Mankouké and Kandiolé North.

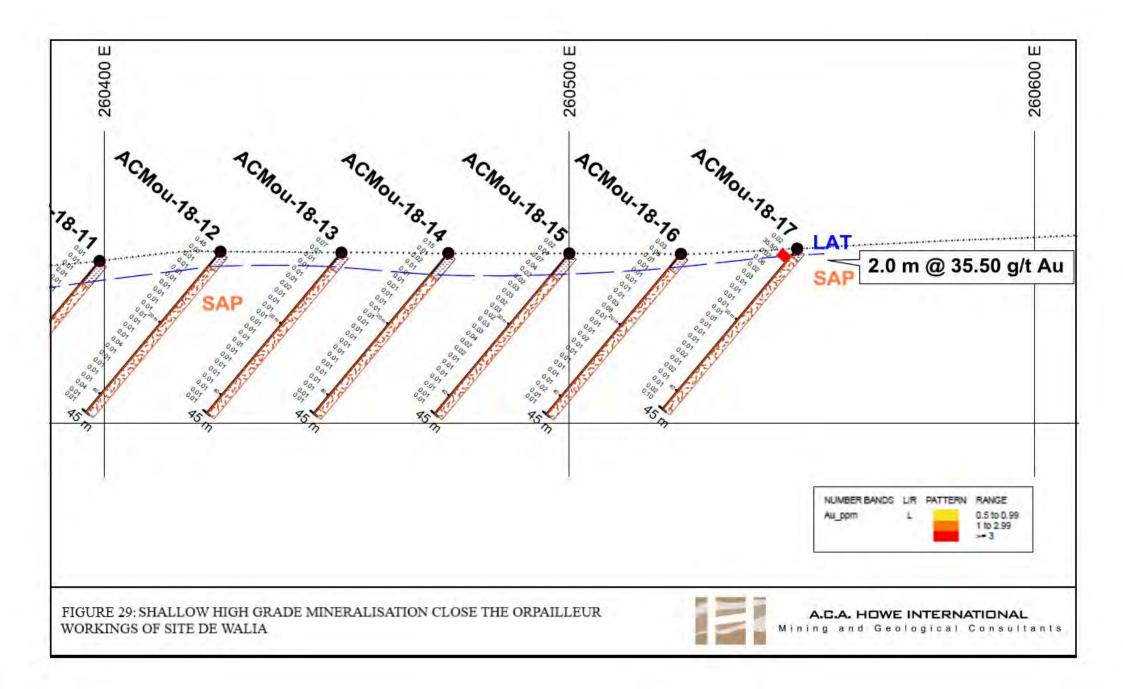
7.3.5. MOUSSALA NORTH

While Mankouké displays strong north-south structural control on mineralisation, Moussala North shows some differences that require investigation. There is evidence for strong focusing of mineralisation west of a northwest to southeast trending (320° true north azimuth) ridge at the orpailleur workings in Site de Bilali. Two lines drilled east-west across the low ridge only show mineralisation immediately west of the ridgeline. A similar northwest to southeast trending silicified gossan outcrop may be traced for at least 50 m along the crest of an isolated hill (Figure 25 and 26) further north of the mineralised AC Drill Lines 4 and 7. The gossan outcrop displays typical saddle reef type characteristics with sub-vertical, silicified gossan and quartz reef showing marked deformation and multi-stage quartz vein formation, suggesting tight folding. Mapping of any structures preserved in the silicified gossan, plus sampling across the axis of the ridge is recommended to provide more information on the structural control at Moussala North.

Figure 25. Looking north to gossan-capped hill from a prepared drill line (1398500N). Orpailleur workings again focussed to west (left) of ridgeline


Figure 26. Silicified gossan outcrop displaying saddle reef type characteristics


AC Drill Line 4 was drilled south of the Site de Bilali artisanal workings and traversed east to west across the low ridgeline on Section 1398305N (Figure 27). The two westernmost holes, ACMou-18-01 and ACMou-18-02, intersected mineralisation west of the ridgeline. AC Section 1398350N (Figure 28), is located further north, but lower on the ridgeline than Line 4, and only intersects mineralisation at the highest point of the section line and again immediately west of the ridgeline. Such focusing of mineralisation only in drill holes west of the ridgeline suggests strong structural control along the line of this broadly northwest-southeast trending ridge and maybe related to the similar trending offsets seen in the airborne magnetic image. This is not unlike the pronounced lithostructural control seen at Mankouké, with a similar mineralisation bias to one side of the structure, but with less evidence of mineralisation accumulated in the saprolite.


Breaks in the ridgeline are also being actively mined by orpailleurs working both the primary vein quartz and the surrounding soft white saprolite material from shafts which they stockpile close to the shafts for washing in small, water-filled pits. Thin veins of limonite-stained quartz are separated into sacks for later pulverising with heavy duty pestle and mortar. AC drilling focused along the ridgeline may be able to identify similar lithostructural controls as seen in the Mankouké permit.

The artisanal workings at Site de Waliya are primarily shallow, where orpailleurs operate a highly organised system of extracting the soft mineralised saprolite and carting on three-wheeled flat-bed vehicles to the washing site. Only the most easterly drill hole on Section 1396900N, ACMou-18-17, close to the northern boundary of the artisanal workings intersected the shallow high-grade mineralisation here with 2m at 35.5 g/t from 2 to 4 m downhole depth (Figure 29). This is significant because Site de Waliya is located on the break of a low ridge rising to the east of ACMoun-18-17. If the paleo-drainage patterns here are similar to that at Mankouké then it is possible that the drill-holes were drilled too far west of the main mineralising structure and the orpailleurs are working the colluvial and remobilised saprolite gold. Extending the drill fence east will mean the section will begin to climb a gentle northwest-southeast ridge. Further AC drilling following the mineralisation trend up-gradient from the mineralised drill hole and east of the artisanal working onto the laterite plateau will reveal much about the source of the mineralisation here.

7.3.6. ORPAILLAGE SITES

Orpaillage sites have been identified by Roscan in the Mankouké, Kandiolé North, Niala, Moussala North, Dabia Sud and Moussala North permits (Figure 31).

The larger known orpaillage sites are as follows:

- Kouroukaida Mankouké permit.
- Diouraba Mankouké permit.
- Mougni and Banko alluvial workings Kandiolé North and Moussala North permits.
- Bilali and Waliya Moussala North permit.

Six orpailleur sites are shown on maps of the Dabia Sud permit though these have not yet been mapped by Roscan.

The Kouroukaida artisanal shaft workings lie 500 m due south of the Central Mankouké mineralised zone. The shafts form the eastern margin to a shallow pit, which extends for 70 m west of the shafts and 50 m in a north-south direction. The shafts have exploited thin, limonite-stained quartz veins within the softer saprolite horizons beneath the laterite crust at a similar easting (263485E) to the main mineralisation at depth in Section 1380506N. These mineralised veins are interpreted to represent the same along-strike, steeply dipping shoot to the Central Mankouké mineralisation.

Figure 30. Near-surface exploitation of soft saprolite beneath the laterite cover (left) and deeper workings of steep primary structures to around 20 m (right) – both at Kouroukaida

The Diouraba orpailleur workings lie on an interpreted southwest extension of the structural linear that hosts the Kabaya deposit. The recently acquired Dabia Sud Permit will allow the relationship between the Diouraba workings and the Kabaya deposit to be investigated to determine secondary dispersion of mineralisation in saprolite exists here, as at Mankouké South and Central. ACMan-19-74 intersected limited mineralisation on the western end of Section 1382160 N, around 100 m west of the Diouraba workings. Similarly, ACMan-19-155, on the western end of a section line (Line 1382350 N), intersected a small amount of mineralisation. The mineralisation encountered in ACMan-19-155 is on the same easting (263500mE) as the main mineralisation of Mankouké Central and requires follow up further to the north to see if the same, or similar lithostructural contact can be identified again.

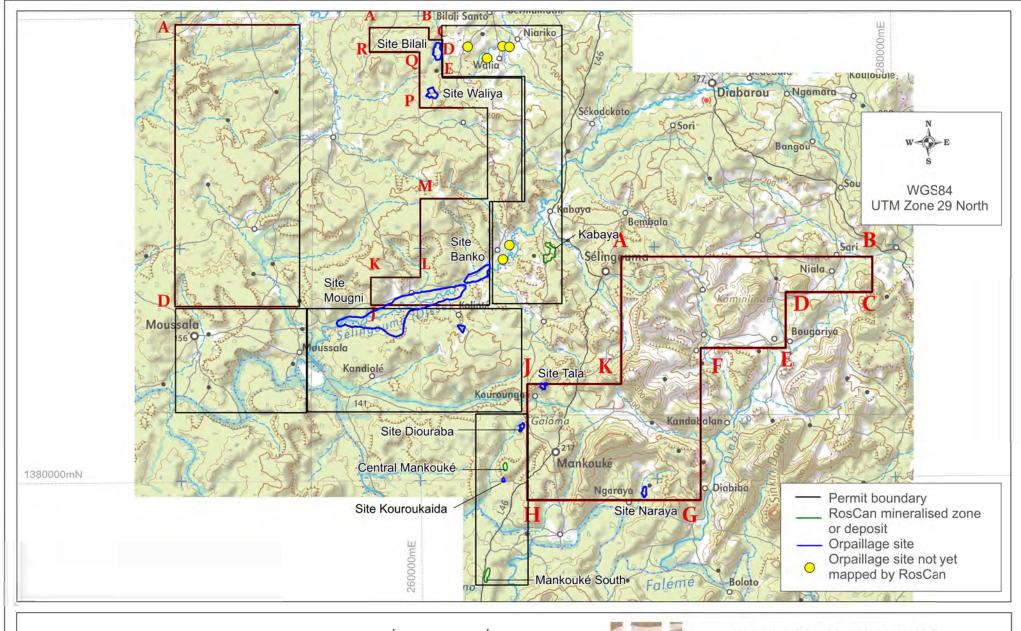


FIGURE 31: LOCATION OF THE CENTRAL MANKOUKÉ, MANKOUKÉ SOUTH ZONES, THE KABAYA DEPOSIT AND ORPAILLAGE SITES (JULY 2020)

A.C.A. HOWE INTERNATIONAL Mining and Geological Consultants A significant east-northeast/west-southwest zone of alluvial mining known as Site Mougni and Site Banko follows the Sélingouma (Dissé) River from the village of Moussala in the Kandiolé West Permit, through the northern part of the Kandiolé North Permit and into the Moussala North Permit for 7 km combined strike length. This extensive area of artisanal alluvial mining activity was not visited during the ACA Howe site visit due to its flooding during the wet season and requires further investigation during the dry season.

8. DEPOSIT TYPES

Several different types of gold deposits occur in the Kéniéba district. These include alluvial, lateritic, eluvial and primary hydrothermal gold deposits, all of which have been worked on a widespread scale by orpailleurs. Orpailleurs often work the softer saprolite material on the flanks of low hills or along river banks where there is a ready supply of water for panning. Occasionally the orpailleurs may be seen using metal detectors.

Major gold deposits in the Kédougou-Kéniéba inlier are located along structural splays from the main north-south trending Senegal-Mali Shear Zone and associated splays to the north-northeast and northeast. Major deposits from south to north, with in excess of 1 million ounces (M oz) of gold include Boto (IAMGOLD), Fekola (B2Gold), Gounkoto (Barrick Gold), Tabakoto (Algom Resources), Segala (Algom Resources), Yalea (Barrick Gold), Loulo (Barrick Gold), Sadiola (IAMGOLD) and Yatela (IAMGOLD/AngloGold Ashanti). In addition to the larger deposits described above, several other gold deposits have been identified in close proximity to the Kandiolé Project, including IAMGOLD's Siribaya and Diakha deposits immediately to the south and Komet Resources' Dabia Sud deposit to the north and east.

ACA Howe considers that the mineralisation encountered at Roscan's properties to date comprises shear-zone hosted gold of hydrothermal origin, as indicated by mineralised breccias focused along the main north-northeast to south-southwest lithological contacts intersected in drilling. The majority of the mineralisation identified is concentrated within oxidised zones and underlying unoxidised saprolite. The oxidised zones rarely extend beyond 80 m depth, while the mineralised saprolite can continue to 130 m below surface in areas covered by laterite. Mineralisation in these zones is exposed to weathering and alteration from surface water infiltration and may be locally leached as groundwaters percolate downwards to the water table, leading to the precipitation of a supergene gold zone. In lateritic terrains, the mineralisation above the primary hard rock root zone may spread out to form a mushroom-shaped deposit within the overlying saprolite and within the lateritic profile (Figure 22, Section 7.3). At Mankouké the base of the oxide zone is not currently well constrained, but there is a certain stratification of almost flat-lying lenses throughout the saprolite profile that may correlate with differing degrees of oxidation and gold remobilisation within the profile.

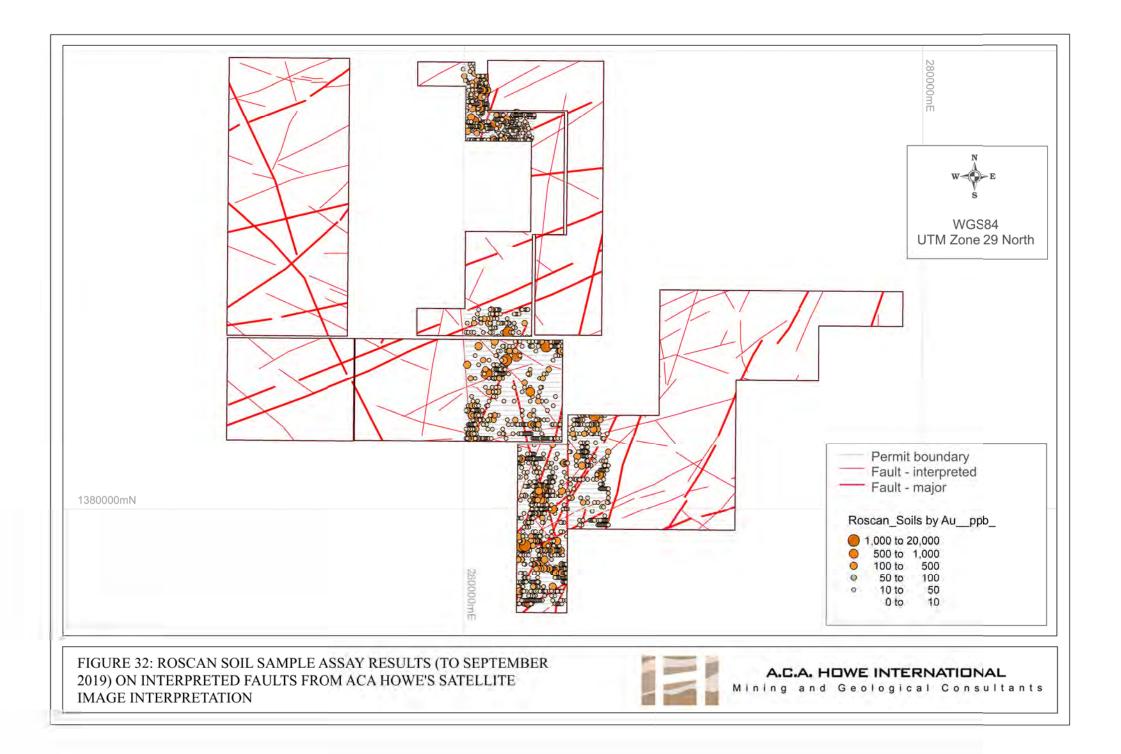
9. EXPLORATION

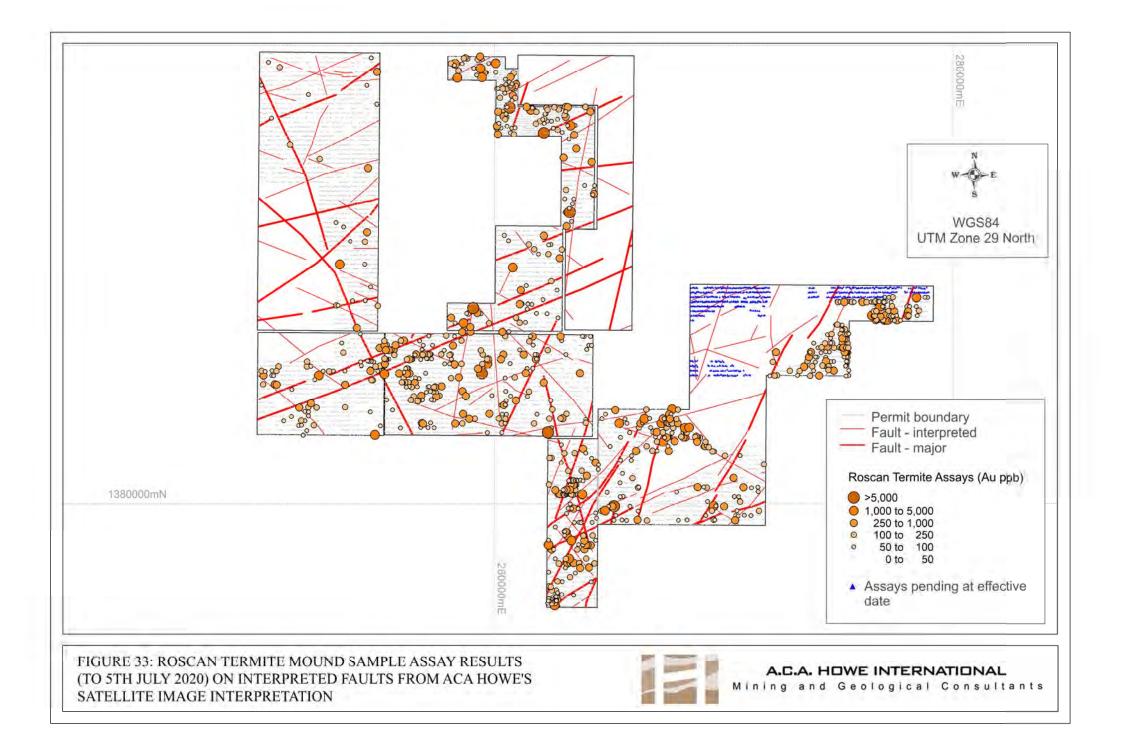
9.1. SURFACE GEOCHEMICAL SURVEYS

An initial exploration programme was carried out by Roscan in 2018, consisting of mapping and sampling of the entire permit holding with the objective of identifying areas for more detailed exploration work, including drilling. Satellite imagery was used to create basemaps for the mapping and field work.

Geochemical soil and termite mound sampling surveys were carried out on specific areas of the Mankouké and Moussala North permits that were considered the most prospective. A total of **16,091** samples were collected in 2018 to 2019, consisting of **5,906** soil samples, **9,952** termite mound samples and **233** grab samples. An additional **3,796** termite mound samples were collected in the Mankouké, Kandiolé North, Moussala North and Niala permits in 2020 (Table 13 and Figures 32 and 33).

TABLE 13. DETAILS (LE 13. DETAILS OF SURFACE SAMPLING COMPLETED BY ROSCAN				
Survey	Area Covered (km ²)	Number of Samples			
Soil sampling	52	5,906			
Termite mound sampling	220	13,748*			
Grab sampling	N/A	233			


*Results for 640 termite samples from the Niala permit had not been received by the Effective Date of the report.

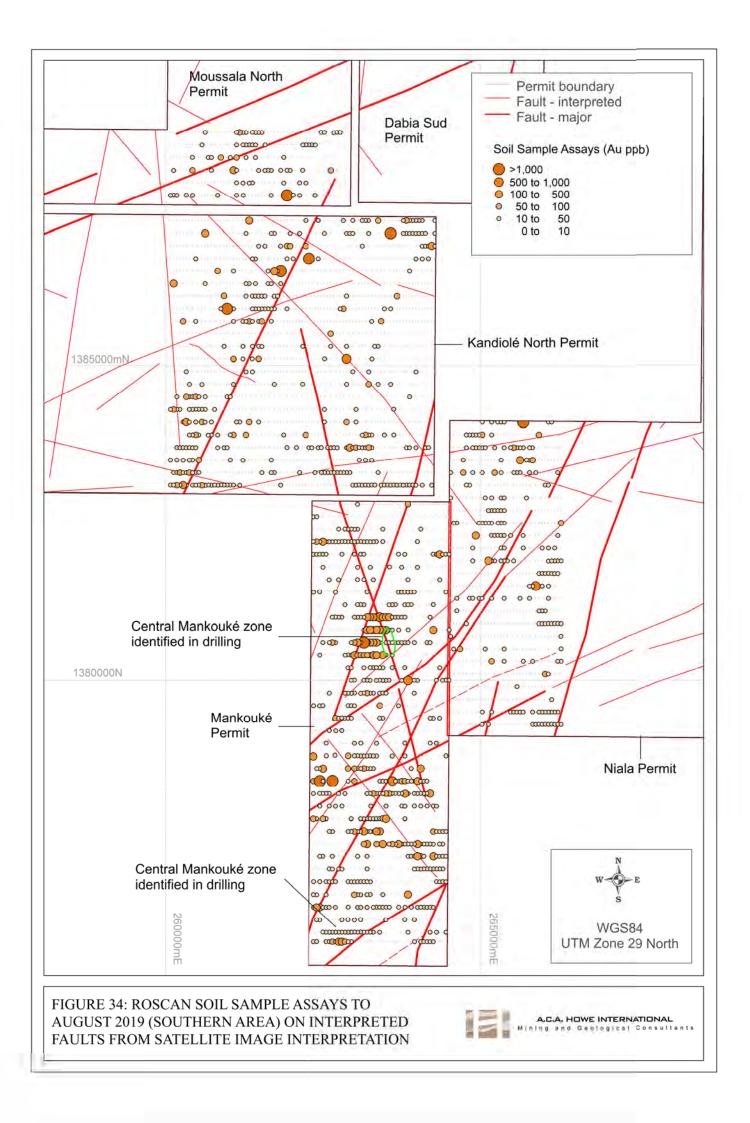

Soil samples were collected on lines 100 to 200 m apart with sample stations every 50 m. The soil sampling survey covers an area of 52 km². Soil samples were taken at pre-planned sites, which had been located in the field using a handheld GPS. If a planned site was considered unsuitable then the sample was taken at the nearest suitable location and the new location was recorded using handheld GPS.

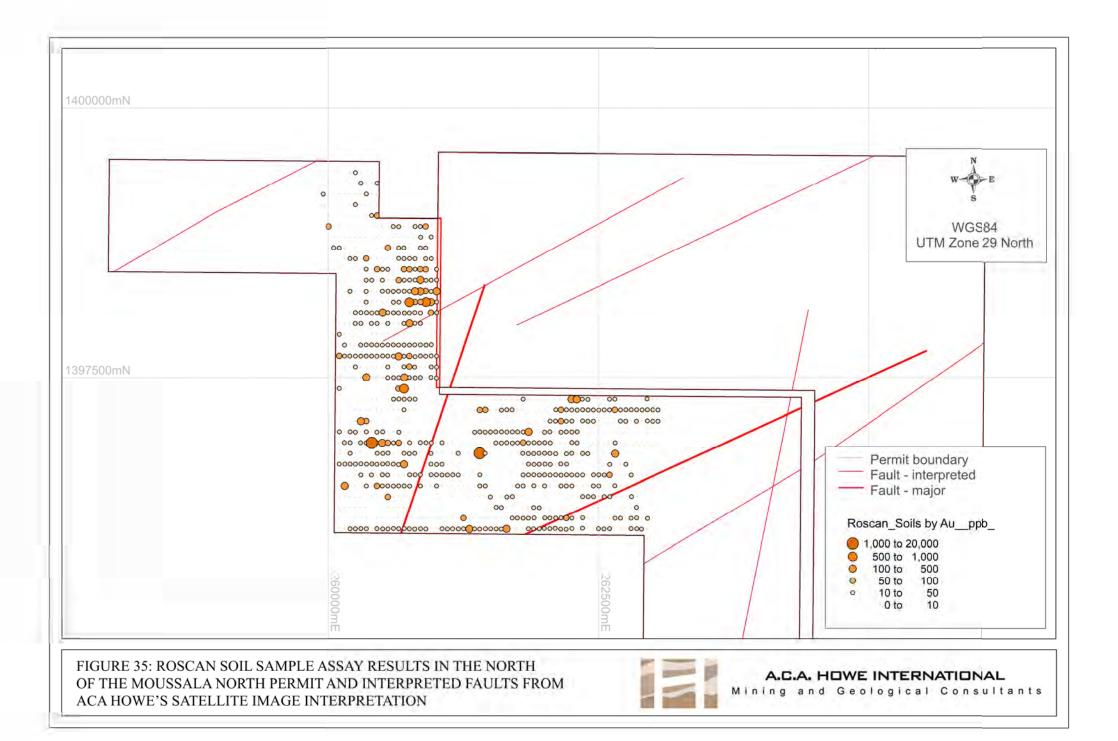
Samples were taken 30-40 cm below the surface to avoid influence from any surface disturbance and to ensure natural in-situ soil samples. Sample material was quartered successively until sample weights were around 2 to 2.5 kg. The material was then placed in plastic bags with a tag with a preprinted sample ID. A reference ID tag was kept in the ticket book with the actual coordinates and a short description of the sample material. ACA Howe considers that the procedures described by Roscan are to industry standard and therefore concludes that the samples are representative. ACA Howe is not aware of any factors that may have resulted in sample bias.

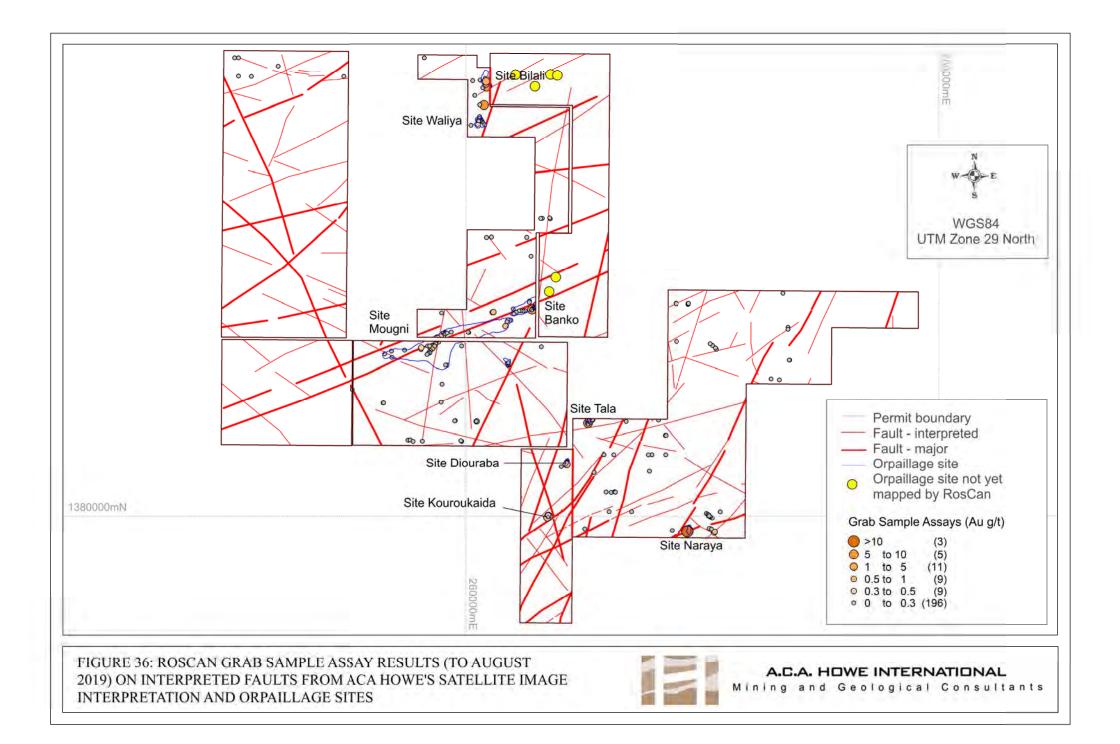
Termite mound sampling is now an established bioindicator of gold mineralisation in this part of West Africa. Termite sample locations are governed by the presence of termite mounds. The termite sampling programmes completed between 2018 and 2020 covered approximately 220 km² of the Kandiolé Project and outlined several significant anomalous areas.

A theoretical grid for the termite sampling was planned prior to the programme and locations were identified using handheld GPS. At each location an assessment of the termite mounds within a 25 m radius was completed in order to find the most suitable. Only "cathedral" mounds were sampled and where there were several mounds within the area the largest active mound was selected. If no termite mound was found within a 25 m radius of the planned location then the team moved to the next site. A new handheld GPS reading was taken from the centre of the mound.

Termite mounds were channel-sampled vertically using a small pick on four sides of the mound to ensure sample representivity. The material from each channel sample was combined and then quartered successively to achieve sample weights of 2 to 2.5 kg. Samples were then placed in plastic bags with a tag with a pre-printed sample ID. A reference ID tag was kept in the ticket book with the actual coordinates and information such as topography, height and size of the mound, the colour of the mound and whether the mound was active.


ACA Howe considers that the procedures described by Roscan are to industry standard and therefore concludes that the samples are representative. ACA Howe is not aware of any factors that may have resulted in sample bias. The similarity of the initial soil and termite sampling results led Roscan to use termite sampling for the subsequent geochemical surveys as it is considered that it is easier to obtain a representative sample.

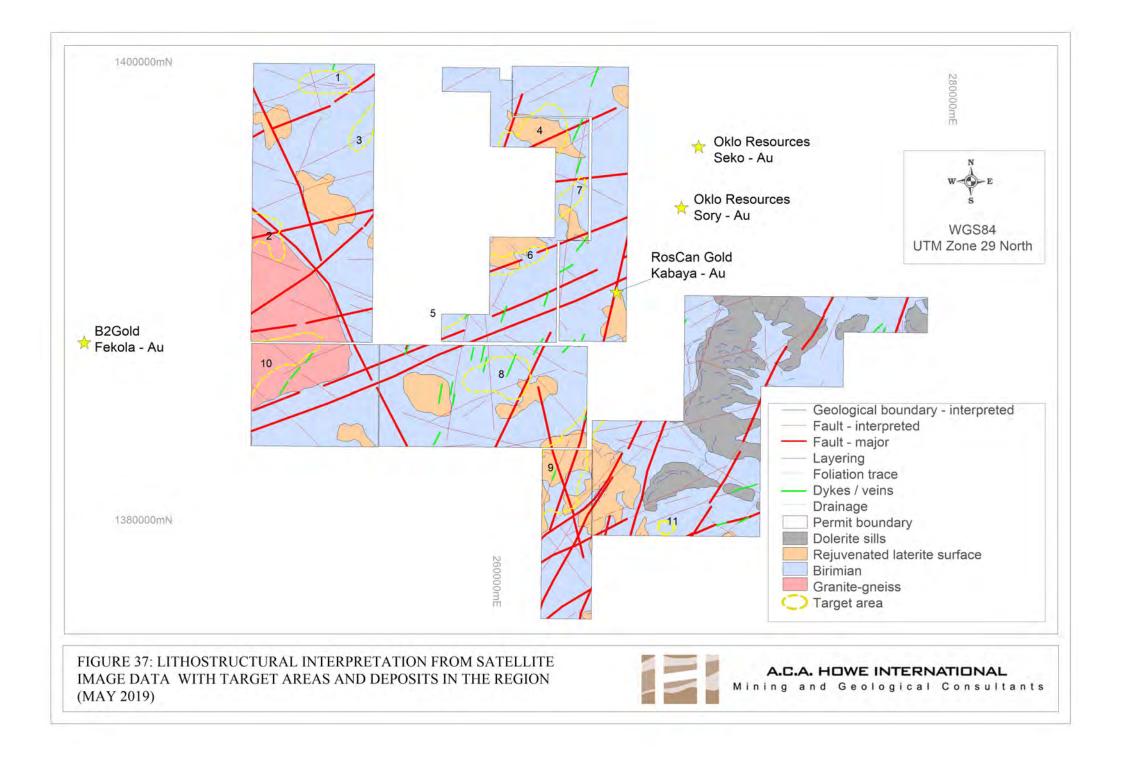

The strongest termite and gold-in-soil anomalies within the Mankouké permit (Figure 34) display a generally northerly trend which Roscan has identified as being consistent with the larger-scale regional trends visible in the airborne magnetic gradient images with some overprinting by surface geological processes. The results of termite sampling in the Moussala North permit may show intersecting north-northeast and east-northeast trending anomalies, again consistent with the structures in the area (Figure 35).


Termite sampling during 2020 (Figure 33) has identified significant anomalism in the south of the Niala permit, in an area with multiple faults interpreted from satellite imagery along north-northeast, northwest and east-northeast trends. Further to this, two clusters of anomalous results in the northeast of the Niala permit warrant follow-up exploration.

233 grab samples were taken predominantly at orpaillage sites but also in the surrounding and more remote areas of the permits (Figure 36). Grab samples were taken as rock chips from areas with veining, with samples also including vein selvage and adjacent saprolite. The highestgrade grab samples are concentrated around the orpailleur workings, in particular Site de Naraya in the Niala permit, with grades including 18.6, 24.4 and 41.0 g/t Au.

9.2. SATELLITE IMAGE INTERPRETATION

In May 2019, ACA Howe completed a satellite image interpretation on the Kandiolé Project and surrounding area (Figures 37 and 38), utilising VHR satellite data covering the majority of Roscan's permits (Figure 39) and freely available Landsat, ASTER and Sentinel data in the remaining area. The use of various types of satellite data provides structural detail on the VHR image data, together with mineral indicators in the Landsat, ASTER and Sentinel data.


Geological interpretation from the study is described in Section 7.2 - Permit Geology and is shown on Figures 37 and 38. All interpretation in the study is subject to ground truthing which has not yet been completed by Roscan.

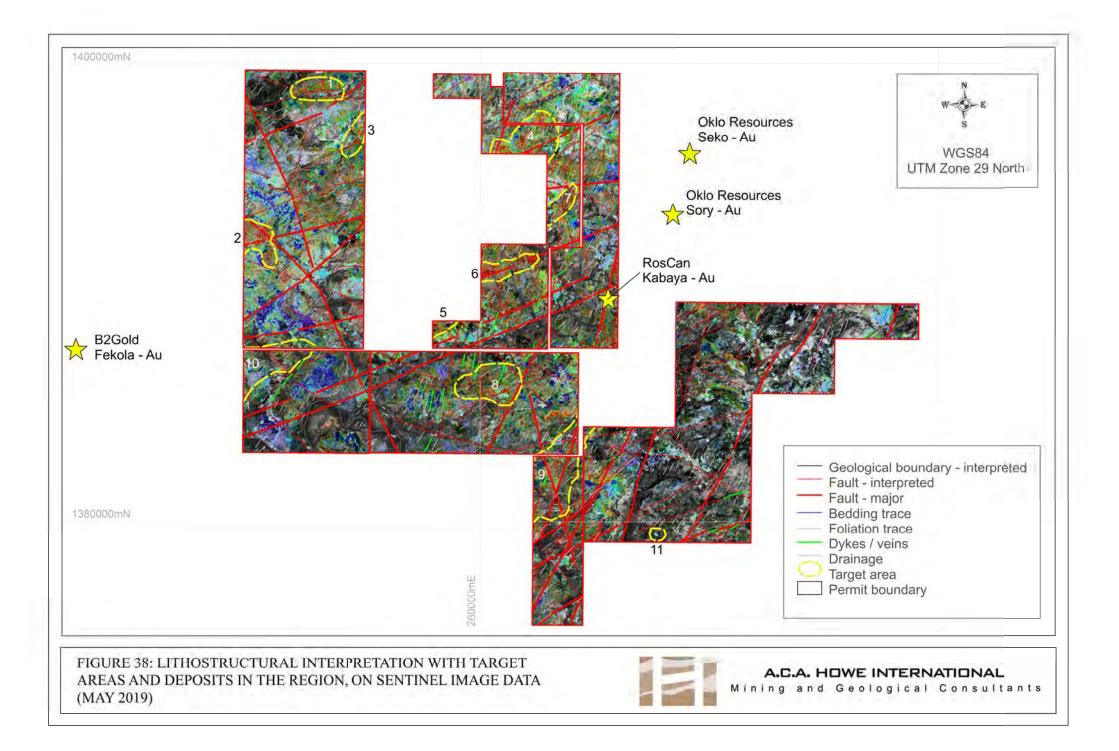

During the course of the study, clay-iron features were identified at Fekola, Siribaya and other nearby deposits. Therefore, the twelve targets selected by ACA Howe (Table 14) as possible locations for follow-up exploration on the ground were based on both structure and the location of similar clay/iron features. Note that target 12 and part of other targets are outside of Roscan's permits and as such, are not shown on Figures 37 and 38.

	TABLE 14. SUMMARY OF PROPOSED	TARGET AREAS	
ID	Criteria	Comments	
1	Clay/iron feature over intersecting structures	In the Segando South permit	
2	Clay/iron feature over intersecting structures	In the Segando South permit	
3	Clay/iron feature on ENE fracture	In the Segando South permit	
4	Clay/iron feature on ENE fracture	In the Moussala North permit	
5	Clay/iron feature over intersecting structures	Between Segando and Moussala North	
6	Clay/iron feature on ENE fracture	In the Moussala North permit	
7	Clay/iron feature on NNE fracture	In the Moussala North permit	
8	Clay/iron feature over intersecting structures	In the Kandiolé North permit	
9	Clay/iron feature on NNE fracture	In the Mankouké permit	
10	Clay/iron feature close to intersecting structures	In Segando South & Kandiolé West permits	
11	Possible artisanal workings close to intersecting fractures	In the Niala permit	
12	Clay/iron feature between east-west fractures	Outside permitted area	

٦

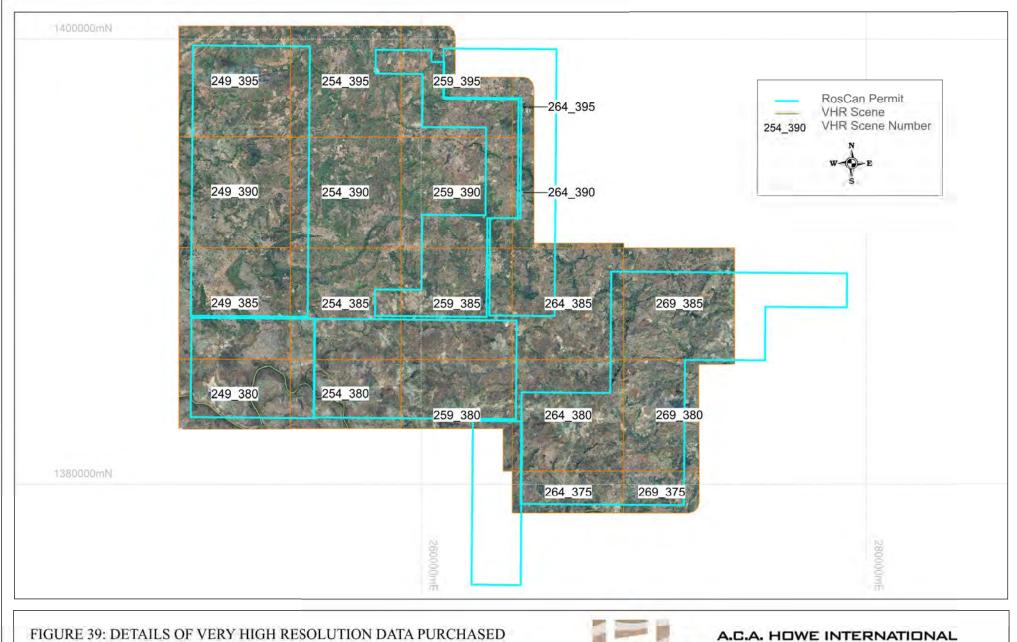


FIGURE 39: DETAILS OF VERY HIGH RESOLUTION DATA PURCHA BY ROSCAN

Mining and Geological Consultants

Although the target areas were selected based on the satellite image data and the known mineralised trends only, subsequent research into the data in the Roscan and surrounding permits has revealed that the targets are coincident with a number of significant features:

- Target Area 4 the target identified by ACA Howe is coincident with an area of anomalous soil samples taken by Ashanti Mali. The Ashanti Mali targets are shown on Figure 4.
- Target Area 6 on the eastern edge of the target area is a zone that is interpreted by Roscan as the hardrock source of an alluvial zone (based on Ashanti Mali exploration).
- Target Area 7 quartz veining is shown within and to the east of the target area in an annual report by Oklo Resources (source of mapping unknown).
- Target Area 8 a quartz vein is shown on the western edge of the target in an annual report by Oklo Resources (source of mapping unknown).
- Termite anomalies are in close proximity to faults, fractures and target areas interpreted by ACA Howe. This is particularly evident at fault intersections.

Significant conclusions from ACA Howe's study are as follows:

- The study confirmed Roscan's interpretation that the north-northeast trending structures originating from or close to other deposits continue through Roscan's permits, although the location and orientation of these structures was refined. In particular, Target Area 9 represents the southern continuation of a north-northeast trending structure, which may be related to Roscan's Kabaya deposit. Extensive clay/iron alteration is present in this zone.
- The north-northeast trending Siribaya structure is interpreted to continue into Roscan's Mankouké permit and geophysical data also shows a possible continuation further north through Roscan's permits.
- In Roscan's permits cross-cutting structures are observed on an east-northeast trend, one of which is in close proximity to both the Fekola Mine and Oklo Resources' Sory zone. Targets 5 and 6 cover clay-iron alteration related to this structure, although the targets are partly outside of Roscan's permits.
- There is evidence of horizontal movement in the east-northeast trending faults described above, which may have formed tensional shear zones between the faults.

9.3. SYSMIN REGIONAL AIRBORNE GEOPHYSICAL SURVEY

The results of the SYSMIN regional airborne magnetic survey, completed in 2000 to 2004, were reinterpreted in February 2020 by Geokincern. The interpretation was based on data for the Mankouké permit only.

As described in Section 7.3 and shown on Figure 16, a lithological control to the gold mineralisation was interpreted by Geokincern (2020). The interpretation also indicates that lithological contacts may follow north-northeast trends, with faults ranging from east-southeast to north-northeast. Fold

hinges are interpreted with north-northwest to northeast orientations and folded sequences suggest potential for the repetition of mineralised zones.

ACA Howe's review of drill core, core photos, geological logs and cross sections supports this interpretation.

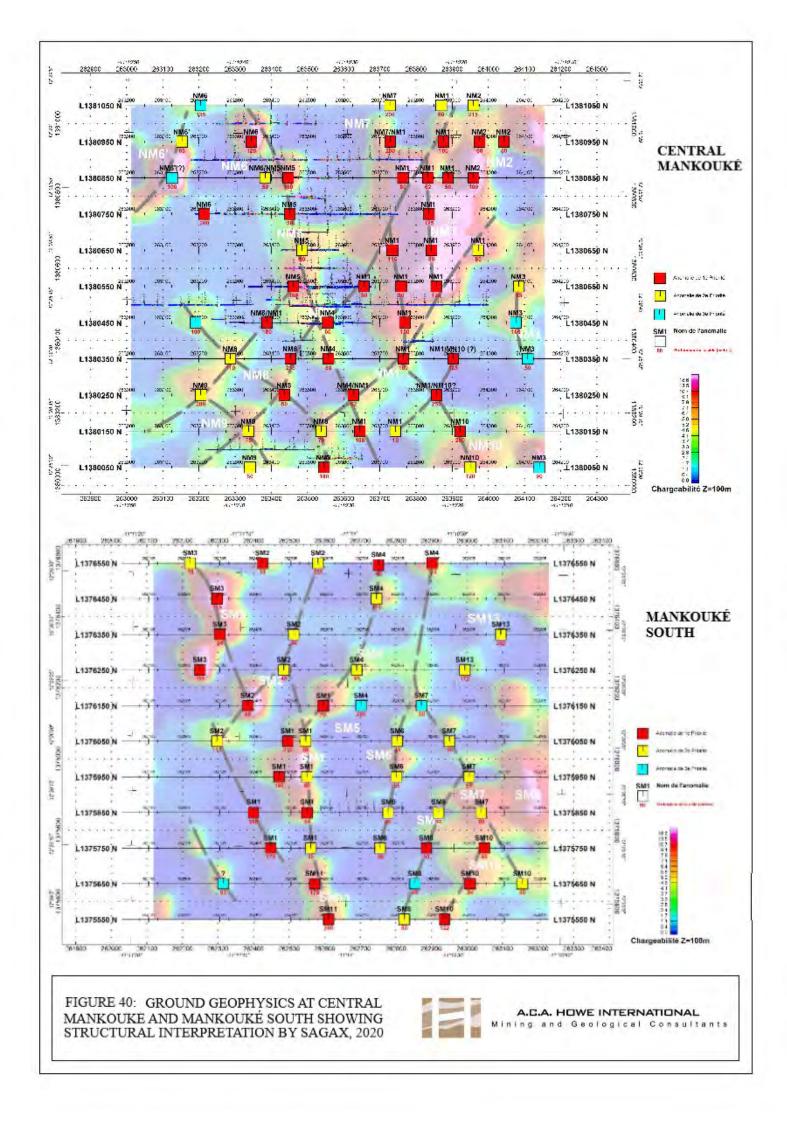
9.4. GROUND GEOPHYSICS

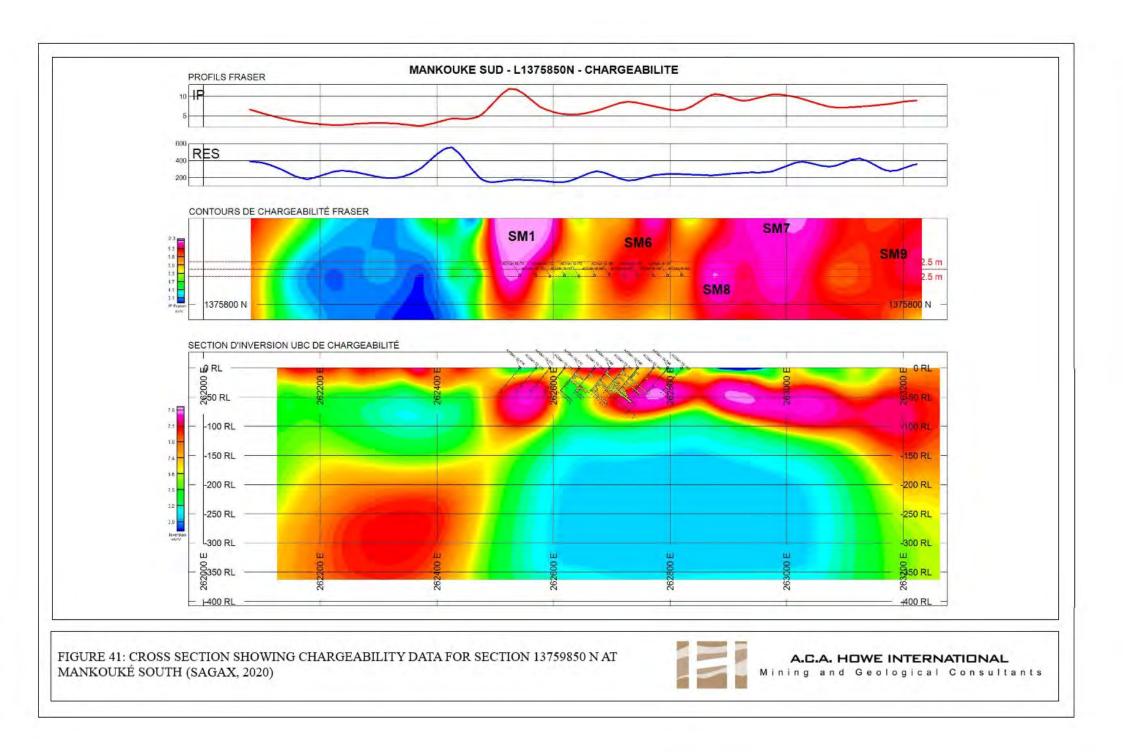
9.4.1. SURVEY PARAMETERS

Between 25th December 2019 and 14th February 2020, SAGAX AFRIQUE SA (SAGAX) completed a geophysical survey using induced polarisation (IP) / resistivity and magnetometry. The survey was completed on two grids in the Mankouké permit in the Mankouké Central and Mankouké South zones (Figure 40). For the IP / resistivity survey, the grids in both locations consisted of eleven lines at a spacing of 100 m, with 50 m between each station. Ground magnetometry lines were completed at a spacing of 50 m, with continuous readings along the lines. A total of 26.4 line km were surveyed using the pole-dipole system and 50.4 km were surveyed by ground magnetometry (both split evenly between Mankouké Central and Mankouké South).

The overall aim of the survey was to outline chargeability and resistivity anomalies which may be related to gold mineralisation. In addition, the survey aimed to determine whether structures associated with the mineralised zones have a characteristic geophysical signature.

9.4.2. IP-RESISTIVITY SURVEY - SAGAX INTERPRETATION


It is noted by SAGAX (2020) that the presence of lateritic crusts and argillaceous alteration made the implementation of the IP survey difficult in certain areas. However, through the IP / resistivity method it was possible to observe the signature of the mineralised zones and to identify further anomalies in the surrounding areas.


At Mankouké South, several anomalies in the southeast of the grid are likely responses produced by the laterite crust. However, the north-south to north-northwest anomaly (SM11, SM1, SM2 and SM3 – Figure 40) shows greater depth in places. The changes in direction of the anomalies are likely due to a sinistral shear trending to the north-northwest.

At Mankouké Central the main anomaly (NM1 in the northeast of the grid – Figure 40) is oriented in a north-south direction and has a sub-horizontal geometry, dipping gently to the east. It is noted that it appears to be framed by north-northeast trending shear structures. SAGAX describes the most chargeable portion as being between lines 1380550N and 1380850N. A further anomalous area is formed by anomalies NM4, NM5 and NM6, following a north-northwest direction and dipping sub-vertically to the west. The main area of mineralisation identified by Roscan at Mankouké Central may be associated with these anomalies. The NM8 and NM9 anomalies in the southwest of the grid follow a northwest trend and are surrounded by north-northeast shear structures (similarly to the NM1 anomaly).

ACA Howe notes that in plan the data appears too noisy to show a strong correlation with the mineralised holes at both Mankouké South and Mankouké Central. However, in section there is a strong correlation, traceable across several section lines showing mineralisation correlating with a deep contact (Figures 41 and 42).

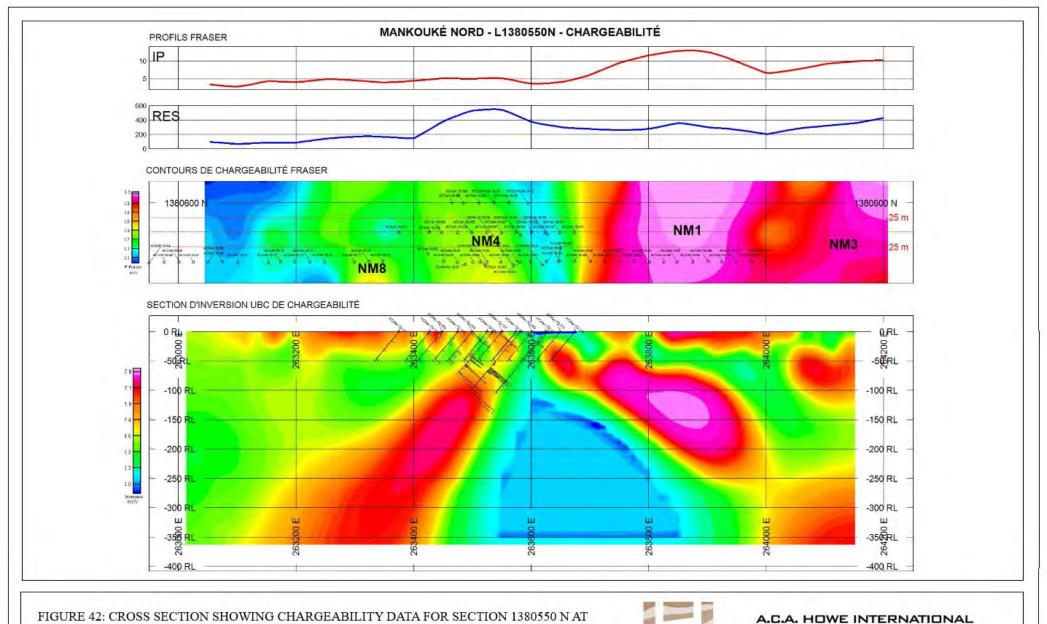


FIGURE 42: CROSS SECTION SHOWING CHARGEABILITY DATA FOR SECTION 1380550 N AT CENTRAL MANKOUKÉ (SAGAX, 2020)

9.4.3. IP-RESISTIVITY - AUSSIECAN GEOSCIENCE INC (AGI) INTERPRETATION

The results of the IP / resistivity survey were also modelled and interpreted by AGI. Cross sections show that a resistive cap overlies a conductive zone (saprock) in several parts of the study area. ACA Howe notes the presence of shallow IP anomalism, particularly at Mankouké South, though it is noted by AGI (2020) that this may be a result of clays, which may also have impacted the penetration depth of the survey. AGI also notes that there were contact resistance issues which may also have affected the results and depth of penetration. ACA Howe considers that the results should be treated with caution. A detailed review of drill core in areas of anomalism should be conducted by Roscan's geologists to determine whether the anomalism reflects mineralised zones, or is just an artefact of the ground conditions.

9.4.4. GROUND MAGNETIC SURVEY – PRELIMINARY INTERPRETATION BY GEOKINCERN

Preliminary interpretation maps of the ground magnetic surveys produced by Geokincern have been provided to ACA Howe by Roscan.

On the Central Mankouké grid the dominant trends of interpreted features, including fold axial traces, faults and dykes, are northwest to north-northeast. In the centre of the grid, the mineralised zone discovered in drilling coincides with northwest to north-northwest trending fold axial traces, though the mineralisation is thought to have a northerly trend. No significant intersections were reported to the east of a north trending fault to the east of the mineralised zone. No strong correlation with ACA Howe's satellite image interpretation is observed.

The Mankouké South grid is characterised by faults and fold axial traces on northwest to northeast trends. Drill holes with significant intersections are within a zone with predominantly north to northwest trending faults and north-northwest to northwest trending fold axial traces. A north-northeast trending fault correlates well with a fault interpreted to continue from the Siribaya Deposit in ACA Howe's satellite image interpretation.

It is not known whether the Geokincern interpretation has subsequently been refined, though it is noted that the maps included in the report do not correspond closely with interpretations from the airborne SYSMIN data and should be re-examined.

10. DRILLING

10.1. SUMMARY

Roscan has followed-up on the surface geochemical anomalies described in Section 9.1 using air core (AC), reverse circulation (RC) and diamond drilling. Drilling completed in 2018 to 2019 identified gold mineralisation in the Central Mankouké zone, less than 500 m due north of the Kouroukaida artisanal workings. The mineralised zones identified at Central Mankouké are predominantly in saprolite and saprock within the oxide zone, from surface down to 80 m below surface. In 2020 Roscan has followed-up on encouraging results from AC drill hole results at Mankouké South and has identified significant gold mineralisation. Roscan's 2020 drilling programme is on-going.

A summary of drilling completed by Roscan to the effective date of this report is shown in Table 15. Collar details for the drilling are shown in Appendices 2 to 4.

AC and RC recoveries have been compared with recoveries from diamond drilling and a decrease in recovery is observed with increasing gold grade in the AC holes. However, it is noted that the correlation is weak and recoveries are not consistently low. Roscan has completed twin drilling of AC and RC holes and ACA Howe considers that given the deposit type, the twin holes show an acceptable correlation with the original holes. However, this requires further assessment once all holes have ben accurately surveyed.

TABLE	15. DETAILS	OF DRILLING COMPLETI	ED BY ROSCAN			
Drill Hole Type	Total Holes	Total Metreage	Total Samples (Excluding QA/QC)			
2018 – 2019 Drilling						
AC	610	28,217	14,189			
RC	3	370	370			
RC-DD	8	914 (380 RC, 534 DD)	914 (380 RC, 534 DD)			
DD	11	1,203	1,180			
2020 Drilling						
AC	938	39,484	19,431 (2,684 pending)			
RC	12	1,207	1,207			
RC-DD	2	421.6 (190 RC, 231.6 DD)	414 (190 RC, 224 DD)			
DD	30	5,052	4,916			
Total	1,614	76,868.6	42,621			

At the effective date of the report, Roscan had drilled 1,548 AC holes for 67,701 m in the Mankouké, Moussala North, Niala, Kandiolé North, Kandiolé West and Segando South permits. 33,620 AC drill hole samples had been sent for analysis. Almost all AC holes were inclined to the west at -50° on

east-west lines, with one line in the Moussala North permit in a northeast to southwest direction (holes drilled on an azimuth of 210° rather than 270°). AC holes were drilled to an average of 44 m, with a maximum depth of 60 m. Hole diameters range from 8-13 cm depending on the drill rig.

A total of 41 diamond drill holes for 6,255 m, 15 RC drill holes for 1,577 m and 10 RC-DD drill holes for 1,335.6 m have been drilled in the Mankouké permit. Diamond drill hole and RC-DD depths average 144 m and range from 55 to 256.4 m. The depth of the RC holes averages 105 m and ranges from 75 to 175 m. The results from 6,854 drill core samples and 2,147 RC samples (including the DD or RC portion of the RC-DD holes) had been received by the effective date of the report.

Diamond core and RC drill holes have mostly been inclined at -50° on an azimuth of 270°, though recent holes at Mankouké South have been drilled to the east with the aim of determining the orientation of the mineralised zones. Diamond drill hole deviations were surveyed using a REFLEX EZ-TRAC XTF instrument. No significant drill hole deviations were observed. Core orientation surveys were conducted where possible in fresh rock, though only 12 bedding, vein and joint readings have both alpha and beta measurements. Diamond drill holes were drilled at HQ size (63.5 mm core diameter) in saprolite and saprock and either continued at HQ size or changed to NQ2 size (50.6 mm core diameter) in fresher rock, depending on the drilling contractor.

147 drill holes from the 2018-19 programme in the Central Mankouké zone were surveyed by DGPS in August 2019 (Appendix 2-4). The remaining drill holes have been surveyed using a handheld GPS, the accuracy of which is usually around 3-5 m. At the effective date of the technical report, drill hole coordinates from the 2020 programme had been recorded using a handheld GPS.

10.2. DRILLING RESULTS

10.2.1. MANKOUKÉ SOUTH

Roscan intersected wide drilled thicknesses of mineralisation in initial AC drilling at Mankouké South in 2019. Roscan has followed up on this with diamond and AC drilling in 2020 and has identified further wide mineralised intersections (drilled thickness) with significant grades (Table 16), in an area with a strike length of around 600 m and depths down to 120 m below surface.

Due to the number of significant intersections, only drilled intervals over 10 m in length and at least 2 g/t Au are shown. Full details of significant intersections drilled by Roscan (of at least 1 m and 0.5 g/t Au), including any higher-grade intervals within the overall intersection, are shown in Appendices 5 to 7. The significant intersections described in this section and shown in Appendices 5 to 7 show drilled rather than true thicknesses as there is insufficient data to determine true thicknesses for the majority of the drilling.

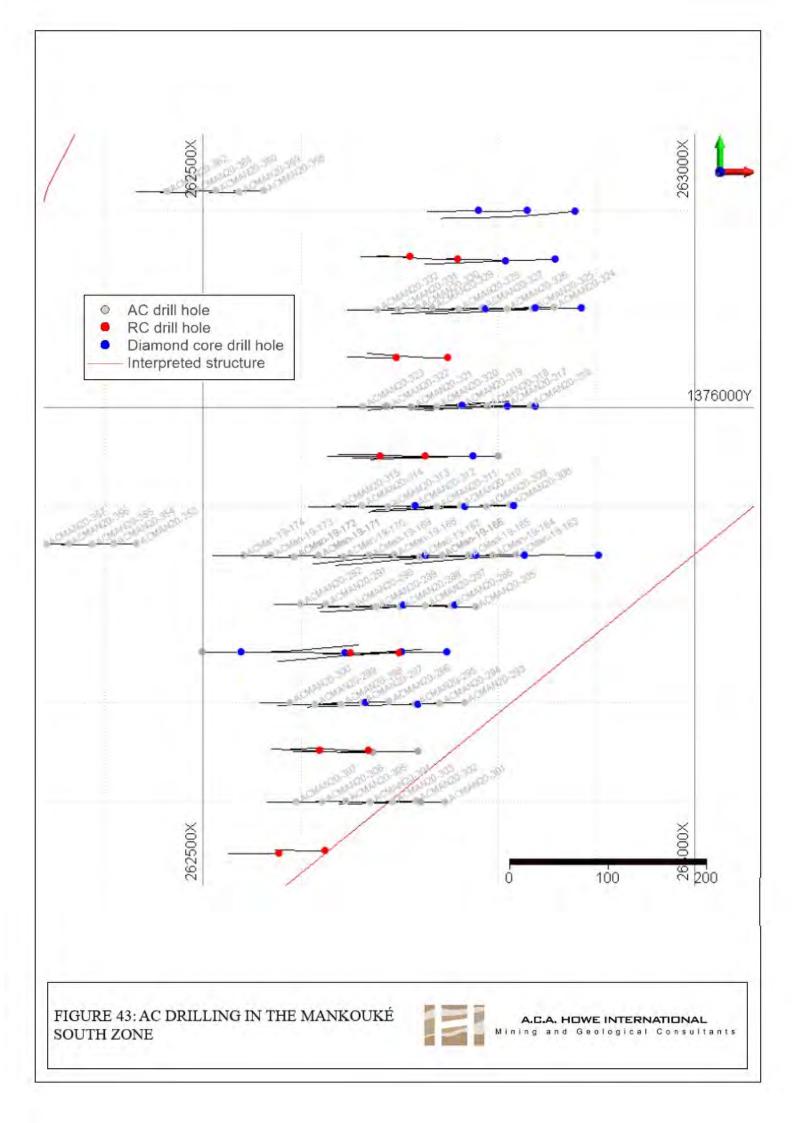
		CTED SIGNIFICANT INTERSECTIONS AT MANKOUKÉ 10 M DRILLED INTERVAL AND AT LEAST 2 G/T AU)			
Hole ID	Hole Type	From	То	Drilled Interval (m)	Au (g/t)
ACMan-19-167	AC	4.0	20.0	16.0	4.50
Including		6	8	2	23.00
Including		16	18	2	5.40
ACMan-19-167	AC	24.0	50.0	26.0	5.86

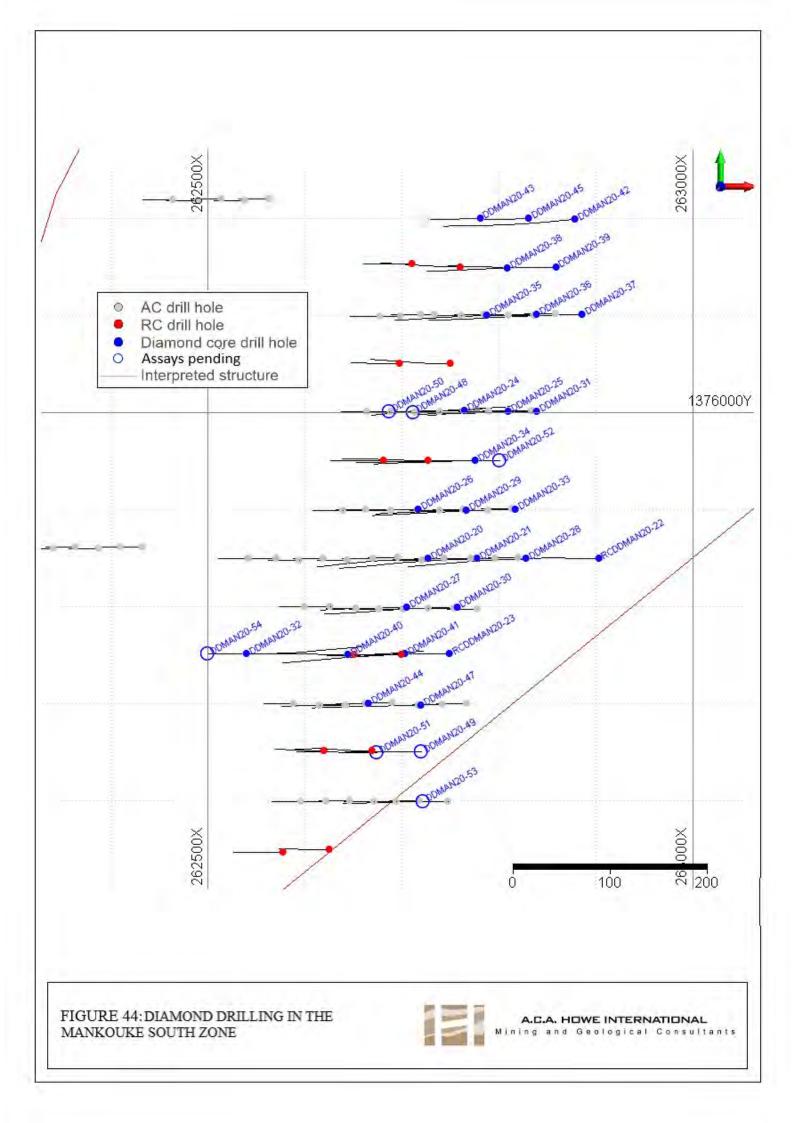
Hole ID	Hole Type	From	То	Drilled Interval (m)	Au (g/t)
Including		28	30	2	10.20
Including		34	44	10	9.44
ACMan-19-168	AC	4.0	14.0	10.0	3.0
Including		10	12	2	10.60
ACMan-19-168	AC	20.0	50.0	30.0	3.71
Including		26	32	6	6.73
Including		46	50	4	9.19
ACMan-19-169	AC	38.0	50.0	12.0	3.23
Including		38	42	4	5.92
ACMan-19-170	AC	10.0	36.0	26.0	2.76
Including		10	12	2	6.76
Including		22	26	4	8.74
ACMAN20-288	AC	2.0	50.0	48.0	3.71
Including		18.0	19.0	1.0	5.62
Including		27.0	50.0	23.0	6.61
Including		30.0	40.0	10.0	8.15
Including		44.0	49.0	5.0	10.49
ACMAN20-289	AC	0.0	49.0	49.0	2.41
Including		8.0	13.0	5.0	10.08
Including		8.0	11.0	3.0	15.11
ACMAN20-290	AC	0.0	15.0	15.0	3.63
Including		10.0	14.0	4.0	10.58
Including		12.0	13.0	1.0	34.60
ACMAN20-298	AC	24.0	36.0	12.0	3.98
Including		33.0	34.0	1.0	8.52
ACMAN20-306	AC	33.0	47.0	14.0	2.76
Including		35.0	37.0	2.0	11.49
Including		35.0	36.0	1.0	18.00
ACMAN20-312	AC	6.0	27.0	21.0	14.95
Including		8.0	25.0	17.0	18.23
Including		8.0	24.0	16.0	19.07
ACMAN20-314	AC	22.0	42.0	20.0	12.12
Including		26.0	34.0	8.0	27.94
Including		26.0	29.0	3.0	70.83
ACMAN20-319	AC	11.0	48.0	37.0	3.27
Including		22.0	41.0	19.0	5.12
Including		22.0	26.0	4.0	9.35
Including		33.0	37.0	4.0	7.68

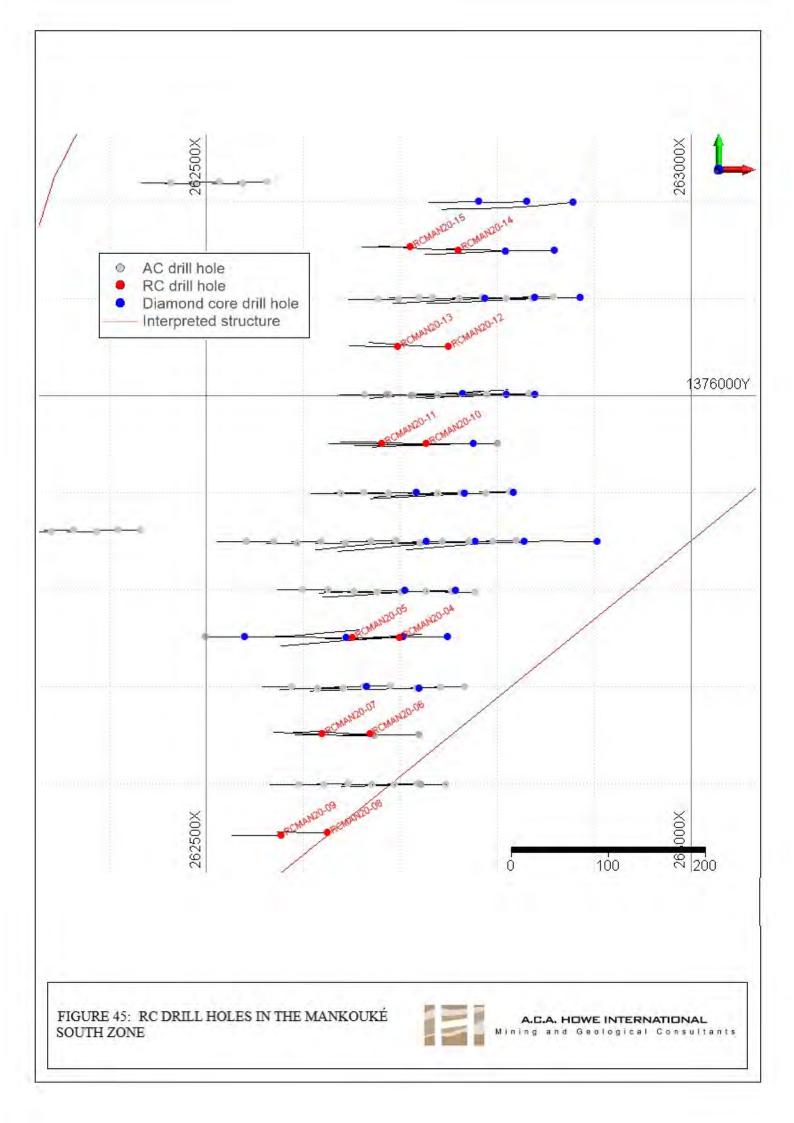
Hole ID	Hole Type	From	То	Drilled Interval (m)	Au (g/t)
ACMAN20-320	AC	16.0	33.0	17.0	2.41
Including		18.0	19.0	1.0	2.74
Including		29.0	32.0	3.0	7.46
Including		30.0	32.0	2.0	9.00
ACMAN20-327	AC	38.0	50.0	12.0	2.49
Including		44.0	50.0	6.0	4.42
Including		44.0	45.0	1.0	12.40
ACMAN20-467	AC	8.0	28.0	20.0	3.0
Including		18.0	28.0	10.0	4.38
Including		22.0	26.0	4.0	5.63
RCMAN20-05	RC	38.0	54.0	16.0	2.08
Including		41.0	44.0	3.0	4.88
Including		41.0	43.0	2.0	5.94
Including		48.0	50.0	2.0	4.96
Including		49.0	50.0	1.0	5.86
RCMAN20-10	RC	119.0	134.0	15.0	2.67
Including		120.0	124.0	4.0	6.92
Including		122.0	124.0	2.0	9.86
RCMAN20-12	RC	96.0	106.0	10.0	2.03
Including		101.0	105.0	4.0	4.03
Including		103.0	104.0	1.0	5.65
DDMAN20-20	DD	15.7	62.7	47.0	4.30
Including		27.7	47.7	20.0	8.81
Including		27.7	30.7	3.0	23.30
Including		38.7	45.7	7.0	12.36
DDMAN20-21	DD	62.3	78.3	16.0	6.26
Including		64.3	77.3	13.0	7.53
Including		66.3	77.3	11.0	8.49
DDMAN20-21	DD	81.3	102.3	21.0	3.18
Including		87.3	101.3	14.0	4.19
Including		89.3	94.3	5.0	5.54
Including		99.3	100.3	1.0	8.76
DDMAN20-24	DD	19.2	44.2	25.0	3.66
Including		19.2	41.2	22.0	4.09
Including		19.2	27.2	8.0	5.92
Including		35.2	36.2	1.0	7.34
DDMAN20-26	DD	20.2	32.2	12.0	10.21
Including		24.2	29.2	5.0	23.73

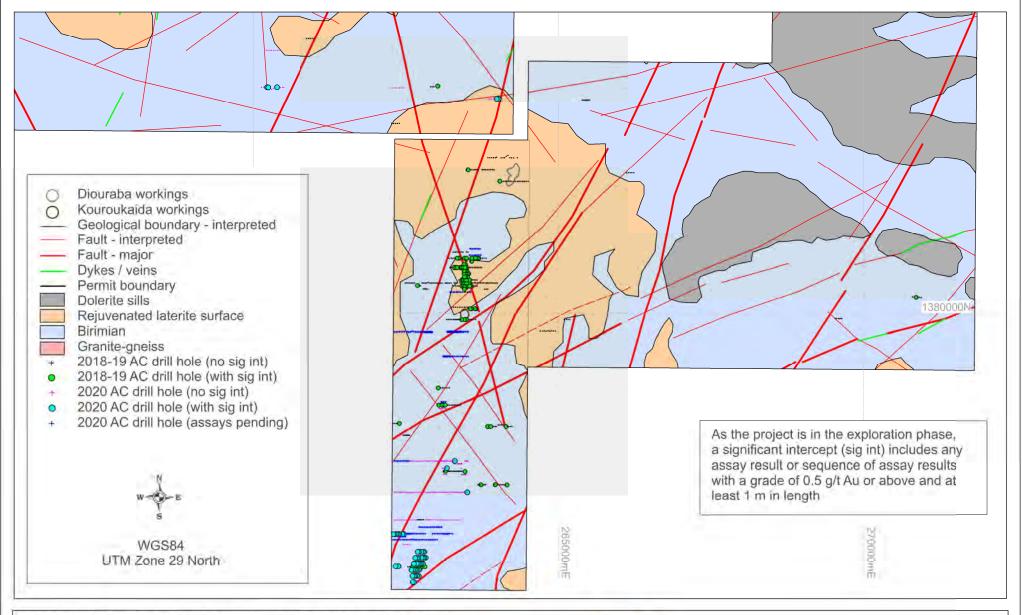
Hole ID	Hole Type	From	То	Drilled Interval (m)	Au (g/t)
Including		24.2	27.2	3.0	36.51
DDMAN20-27	DD	29.2	86.2	57.0	3.66
Including		29.2	52.2	23.0	7.00
Including		29.2	44.2	15.0	9.19
Including		56.2	59.2	3.0	4.44
Including		57.2	58.2	1.0	6.85
Including		79.2	80.2	1.0	4.82
DDMAN20-29	DD	39.2	101.2	62.0	4.84
Including		47.2	67.2	20.0	6.34
Including		48.2	49.2	1.0	5.12
Including		55.2	62.2	7.0	12.71
Including		73.2	88.2	15.0	9.12
Including		73.2	86.2	13.0	10.00
DDMAN20-29	DD	110.2	141.2	31.0	2.61
Including		112.2	134.7	22.5	3.32
Including		112.2	117.2	5.0	5.43
Including		127.2	128.2	1.0	5.61
Including		130.2	131.7	1.5	6.14
DDMAN20-30	DD	78.2	96.2	18.0	7.01
Including		83.2	95.2	12.0	9.88
Including		86.2	95.2	9.0	12.02
DDMAN20-31	DD	93.2	114.2	21.0	2.26
Including		95.2	106.2	11.0	3.59
Including		95.2	96.2	1.0	7.02
Including		99.2	100.2	1.0	8.94
DDMAN20-31	DD	137.2	147.2	10.0	2.65
Including		140.2	145.2	5.0	4.54
Including		142.2	144.2	2.0	5.36
DDMAN20-32	DD	130.2	153.2	23.0	2.28
Including		131.7	142.2	10.5	3.77
Including		134.2	138.2	4.0	5.35
Including		150.2	151.2	1.0	2.85
DDMAN20-34	DD	23.7	37.2	13.5	2.38
Including		25.2	26.7	1.5	11.80
Including		32.2	34.2	2.0	2.58
DDMAN20-34	DD	41.2	52.2	11.0	7.51
Including		42.2	46.2	4.0	17.25
DDMAN20-34	DD	93.2	114.2	21.0	6.65

Hole ID	Hole Type	From	То	Drilled Interval (m)	Au (g/t)
Including		97.2	114.2	17.0	7.93
Including		97.2	100.2	3.0	9.28
Including		103.2	109.2	6.0	13.88
DDMAN20-34	DD	117.2	158.2	41.0	4.75
Including		123.2	127.2	4.0	10.10
Including		123.2	125.2	2.0	15.95
Including		130.2	144.2	14.0	7.86
Including		131.2	134.2	3.0	5.07
Including		138.2	143.2	5.0	15.11
Including		151.2	152.2	1.0	8.84
DDMAN20-40	DD	70.0	81.0	11.0	2.13
Including		73.0	79.0	6.0	2.78
DDMAN20-41	DD	153.0	177.0	24.0	5.14
Including		154.0	175.0	21.0	5.75
Including		155.5	160.0	4.5	14.72
Including		169.0	170.0	1.0	12.10
DDMAN20-44	DD	39.0	57.0	18.0	2.11
Including		40.0	43.0	3.0	7.12
Including		41.0	43.0	2.0	9.43
Including		47.0	48.0	1.0	2.24
Including		56.0	57.0	1.0	2.13

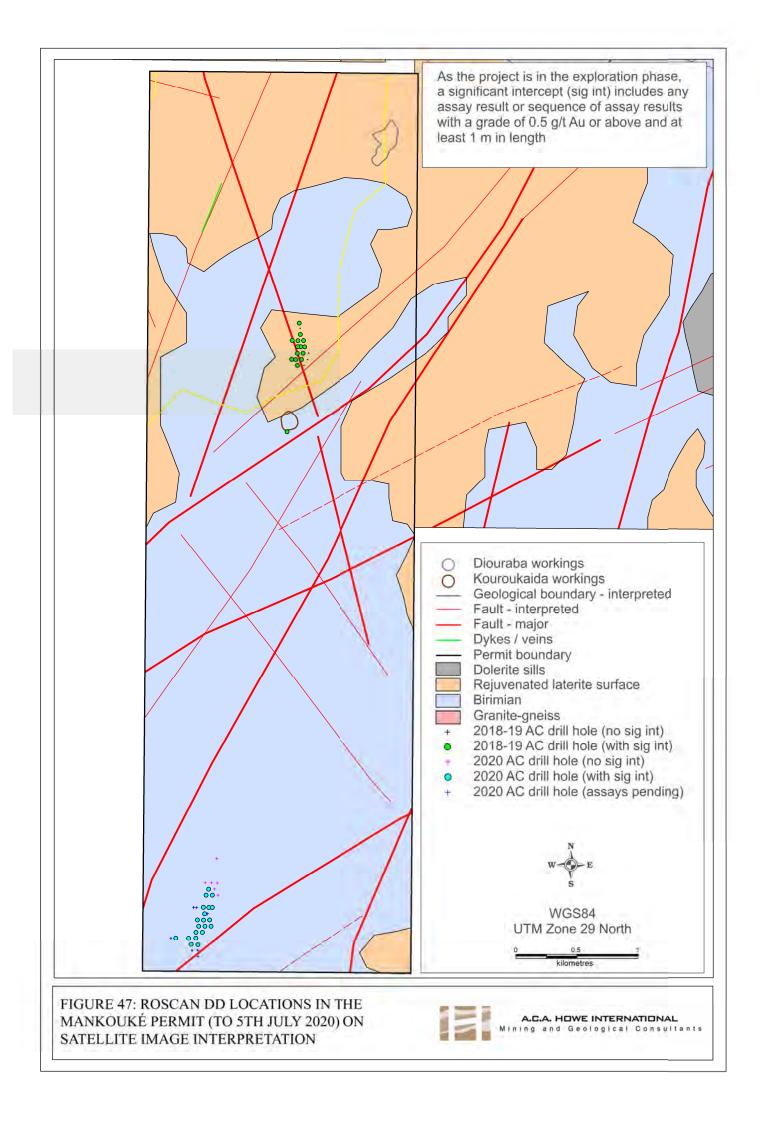

Note: this table includes selected mineralised intercepts with a grade of at least 2 g/t Au and a drilled thickness of at least 10 m, allowing a maximum of 2 m of waste within the intercept. Full details of significant intercepts (with a grade of at least 0.5 g/t Au and drilled thickness of at least 1 m) are shown in Appendices 5 to 7.

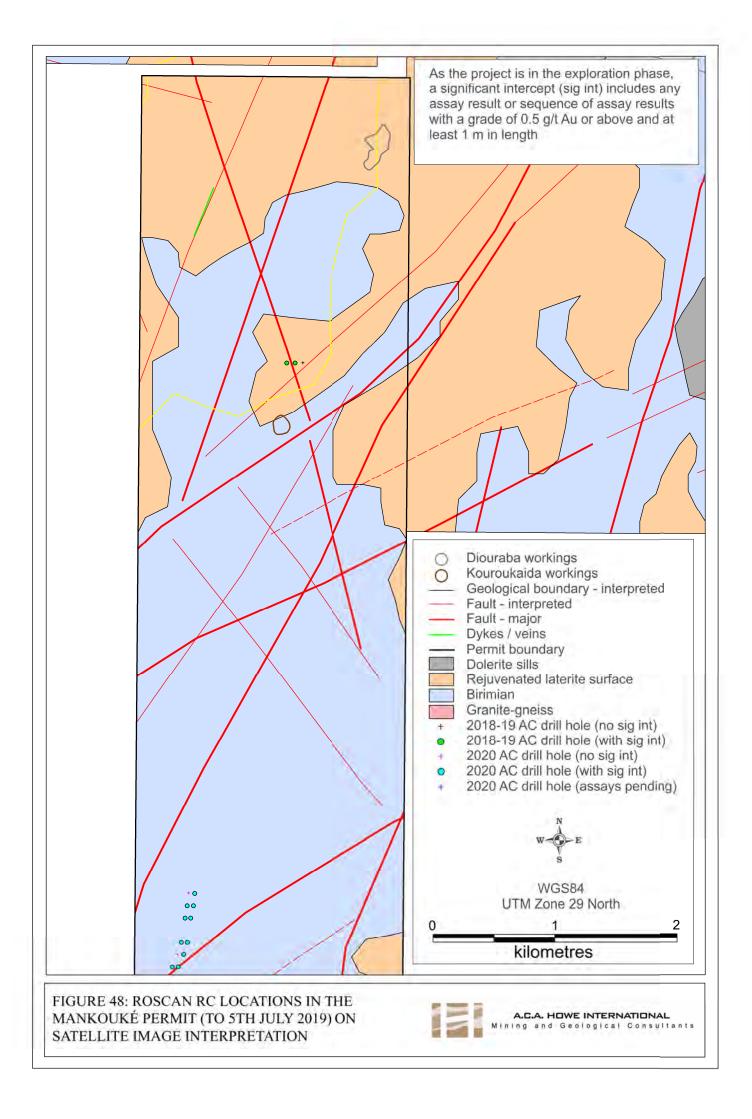

Based on the data available at the effective date of the report, ACA Howe interprets the primary mineralised zone at Mankouké South to be dipping vertically or steeply to the west, with zones of shallower to sub-horizontal dip in the oxide portion of the deposit. Where holes drilled towards the west have intersected the steeply dipping mineralised zone, the intersections reported by Roscan and shown in Appendices 5 to 7 may be wider than the true thickness. However, ACA Howe notes that the results of only one drill hole oriented to the east were available at the effective date of the report and more recently drilled holes should confirm the geometry of the mineralised zone.


Drill hole locations and significant intersections in drilling at Mankouké South are shown on Figures 43 to 48. An example cross section showing the drilling at Mankouké South is shown on Figure 17 in Section 7.3.



Г




FIGURE 46: ROSCAN AIRCORE DRILL HOLE LOCATIONS IN THE MANKOUKE, SOUTHERN NIALA AND SOUTHERN KANDIOLE NORTH PERMITS (TO 5TH JULY 2020) ON SATELLITE IMAGE INTERPRETATION

A.C.A. HOWE INTERNATIONAL

Mining and Geological Consultants

The mineralised zones at Mankouké South appear to have a similar lithological control to Mankouké Central, with wide mineralised zones in the horizons predominantly consisting of greywacke, which do not continue into the thicker pelitic sequences (the darker lithology in Figure 49).

Figure 49. Photo Showing the End of the Mineralised Zone in DDMAN20-40

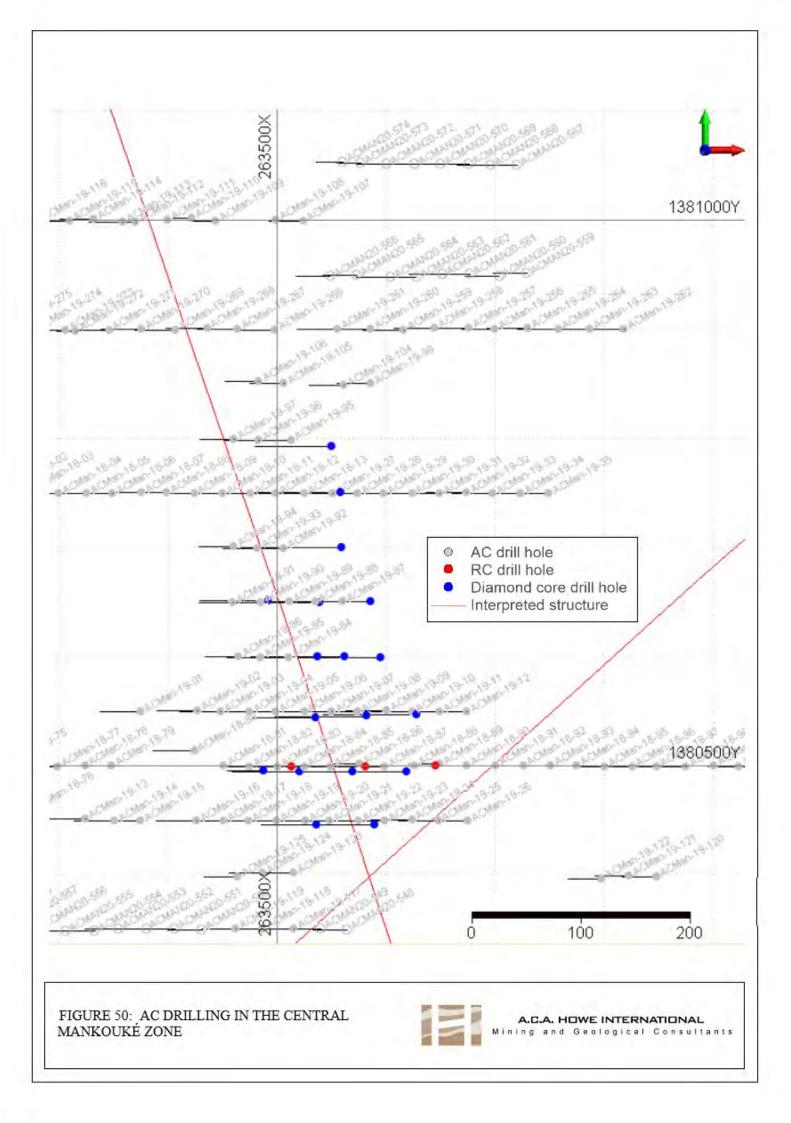
Drill holes ACMAN20-467 and ACMAN20-469 intersected a significant mineralised zone around 400 m to the west-northwest of Mankouké South, with drilled thicknesses of 20 and 36 m respectively. It appears that this zone may have been displaced by a west-northwest trending fault shown in the regional SYSMIN geophysical survey. This requires further testing through drilling.

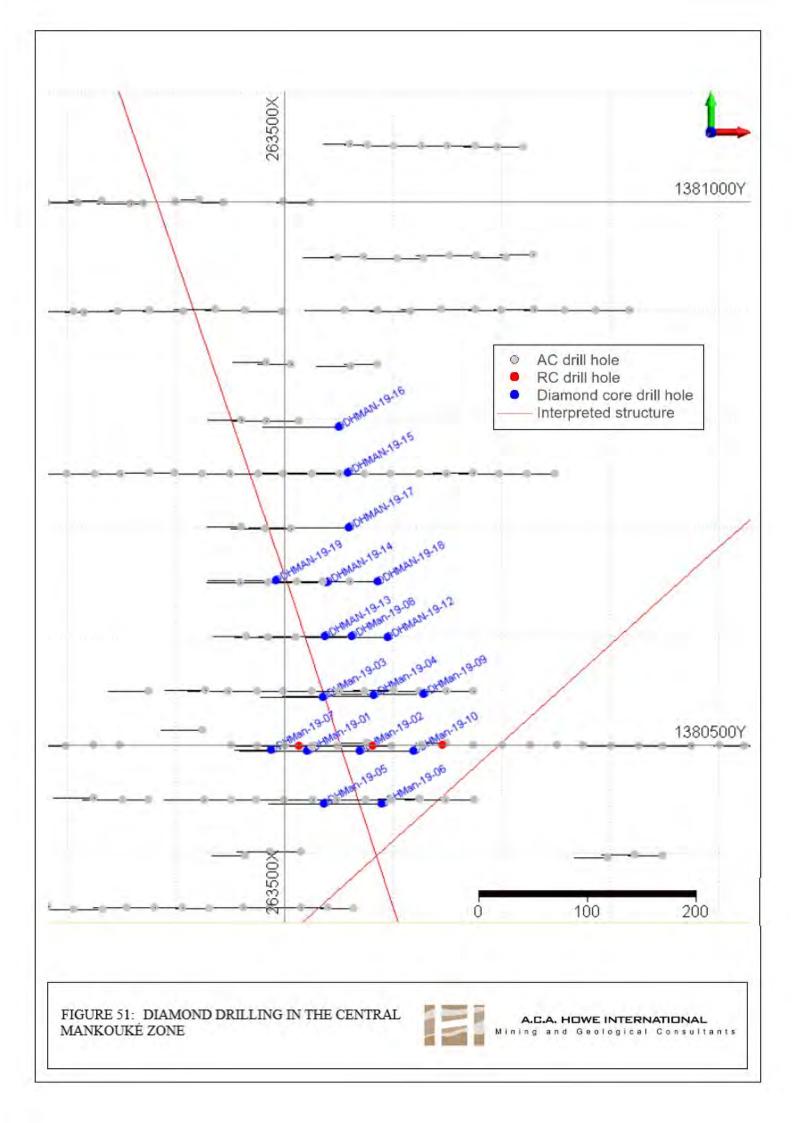
Further details on the mineralised zones at Mankouké South are given in Section 7.3.

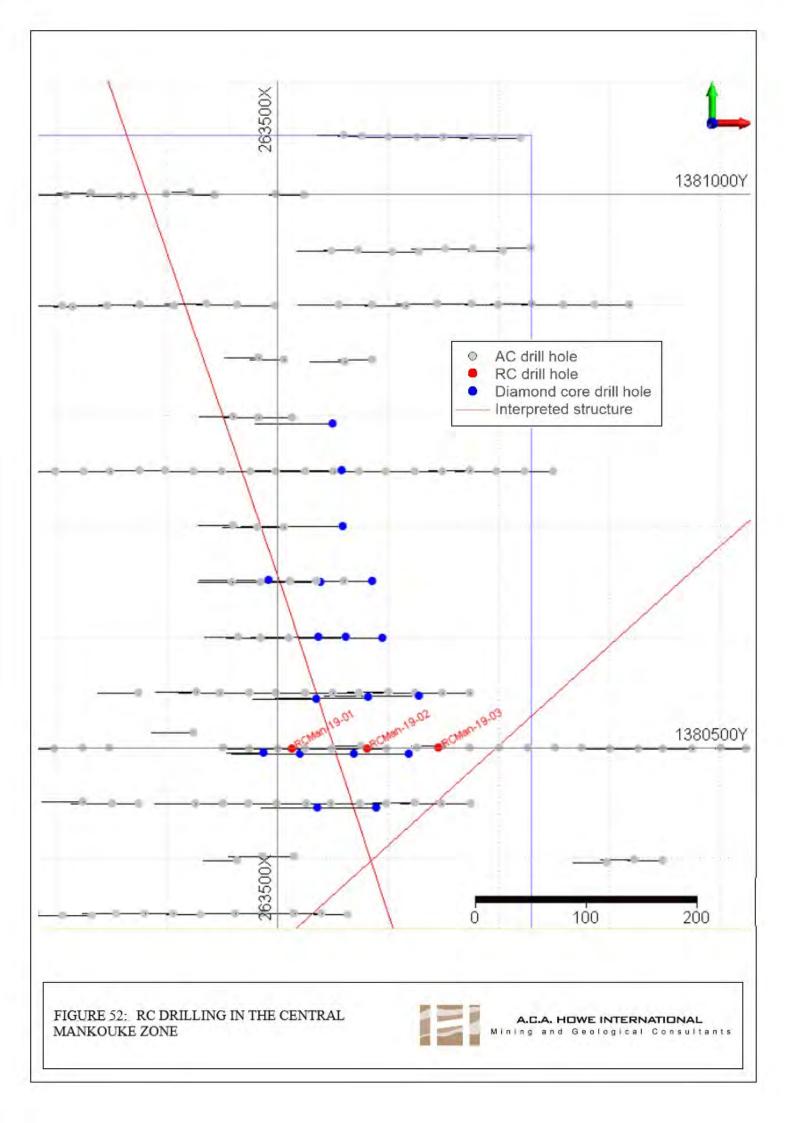
10.2.2. CENTRAL MANKOUKÉ

Table 17 shows selected significant intersections at Central Mankouké. Due to the number of significant intersections, only drilled intervals over 10 m in length and at least 2 g/t Au are shown. Full details of significant intersections drilled by Roscan (of at least 1 m and 0.5 g/t Au), including any higher-grade intervals within the overall intersection, are shown in Appendices 5 to 7.

The significant intersections described in this section and shown in Appendices 5 to 7 show drilled rather than true thicknesses. Initial modelling of the drill hole data at Central Mankouké, from Section 1380450 N to Section 1380790 N, suggests that the mineralised zone has a northerly trend, and may dip to the east at approximately 40° to 50° . Given that all drill holes in this area have a dip of -50° and an azimuth of 270°, it is likely that there would only be a minor difference between the drilled thickness and true thickness. However, no structural data is available from the drilling at Central Mankouké and the geometry of the zone needs to be confirmed.


Hole	Hole Type	From	То	Drilled Interval (m)	Au (g/t)
ACMan-18-81	AC	0	14	14	5.94
Including		10	14	4	14.89
Including		10	12	2	26.70
ACMan-18-82	AC	10	24	14	8.68
Including		12	20	8	14.21
Including		16	20	4	24.88
Including		16	18	2	41.50
ACMan-18-83	AC	26	44	18	8.47
Including		34	40	6	22.15
Including		36	40	4	29.00
ACMan-19-06	AC	44	54	10	2.63
Including		46	52	6	3.25
ACMan-19-96	AC	16	26	10	3.66
Including		24	26	2	7.87
DDHMan-19-04	DD	79.1	89.1	10	8.63
Including		79.1	86.1	7.0	11.48
DDHMan-19-08	DD	66.1	76.1	10	3.45
Including		73.1	76.1	3.0	6.76


Note: this table includes selected mineralised intercepts with a grade of at least 2 g/t Au and a drilled thickness of at least 10 m, allowing a maximum of 2 m of waste within the intercept. Full details of significant intercepts (with a grade of at least 0.5 g/t Au and drilled thickness of at least 1 m) are shown in Appendices 5 to 7.


Drill hole locations and significant intersections at Central Mankouké are shown on Figures 46 to 48 and Figures 50 to 52. Example cross sections showing the drilling at Central Mankouké are shown in Figures 18 and 19 in Section 7.3.

Mineralised intervals intersected in Central Mankouké diamond drill holes DDHMan-19-03, DDHMan-19-04, DDHMan-19-08, DDHMan-19-09, DDHMan-19-12 and DDHMan-19-13 correlate with dark grey to black polymictic breccia. The breccia appears to have played an important role in the mineralisation process and may have produced high-porosity zones which enabled the ingress and precipitation of auriferous fluids. Given the apparent breccia-related mineralisation control, it suggests that there is potential for further primary, structurally-controlled mineralisation at greater depths within the Mankouké permit. A mineralised breccia intersection from 79.1 m (vertical depth below surface approximately 60 m) averaging 8.63 g/t Au over 10 m (drilled thickness) in DDHMan-19-04 is shown in Table 18.

TABLE 18. MINERALISED BRECCIA INTERSECTION IN DDHMAN-19-04							
		San	nple Det	ails	Intersection Details		
Hole ID	Section	From	To	Au (g/t)	From	To	Intersection (Drilled Thickness)
		79.1	80.1	18.10			
		80.1	81.1	13.70			
	-	81.1	82.1	5.62			
		82.1	83.1	14.80			
DDHMan-19-04	1380550N	83.1	84.1	3.40	79.1	89.1	8.63 g/t Au over 10.0 m
DDHMaii-19-04	13803301	84.1	85.1	8.13	79.1	86.1	Including 11.48 g/t Au over 7.0 m
		85.1	86.1	16.60			
		86.1	87.1	0.62			
		87.1	88.1	3.00			
		88.1	89.1	2.35			

The geological log indicates that the intersection may be part of a wider, but unmineralised breccia and vein zone described as follows:

- 68.2 to 88.9 m hydrothermal polymictic breccia, limonite and chlorite altered, strong oxidation of sulphides. Includes an oxidized quartz vein from 85.2 to 86 m.
- 88.9 to 94.1 m massive, medium grained saprolite, rich in feldspar. The mineralised samples continue to 89.1 m, though mineralisation is likely to be hosted in the unit above.

As most of the diamond drill core is in saprolite or saprock material, it is possible that some darker areas are not the typical hydrothermal breccia but represent more mafic material within the mottled zone of the laterite profile. DDHMan-19-09 which was drilled 35 m east of and beneath DDHMan-19-04 did not intersect any mineralisation of significance. It is possible that the dark lithologies of DDHMan-19-04 and DDHMan-19-09 represent the thicker soft mudstone and siltstone successions that mark the eastern boundary to mineralisation.

DDHMan-19-03 ends in mineralisation (2.6 g/t Au over 0.9 m drilled length). ACMan-19-06 which is drilled only 10 m west of DDHMan-19-03 also ends in mineralisation at 60 m downhole depth. These two drill holes record the deepest and thickest mineralised sections on Mankouké Line 8 (1380550N).

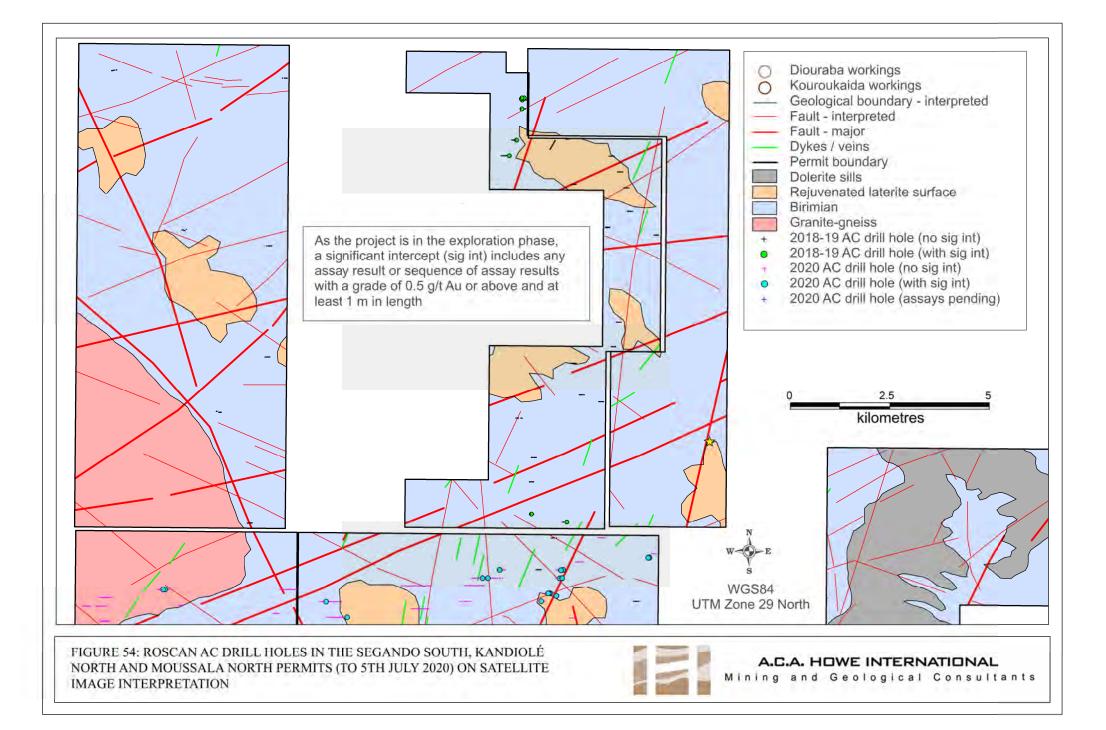
ACMan-18-12, which is close to the top of the low ridge on Line 1 (1380750N) shows significant downhole mineralisation at a similar easting to the Kouroukaida shafts some 700 m to the south. The Kouroukaida workings follow a pronounced north-south striking and steeply-dipping vein structure at depth. The workings are mapped as being 150 m in length, almost 100 m wide and approximately 20 m deep. The drill line is on a lateritic plateau and is accessed by a ford across the Falemé River.

There is a small amount of artisanal activity along the banks of the Falemé 2 km north-northeast (azimuth 020°) of the drill site.

Line 7 (1380500N), Line 8 (1380550N) and Line 9 (1380450N), all including significant drill hole intersects, are a further 400 m north of the workings. Relict primary structures are visible in the saprolite soil profile.

Similarly to hole DDMAN20-40 at Mankouké South, described in Section 10.2.1, the mineralised zone in DDMAN-19-04 does not continue through the thicker pelitic sequence at 93 m (the darker lithology in Figure 53).

Figure 53. Photo Showing the End of the Mineralised Zone in DDMAN-19-04


Further details on the mineralised zones at Central Mankouké are given in Section 7.3.

10.2.3. REGIONAL DRILLING

In addition to drilling at Central Mankouké and Mankouké South, Roscan has completed drilling along strike of these zones in the Mankouké permit and in the Moussala North, Kandiolé North, Kandiolé West and Niala permits. Significant intersections (Figures 46 and 54) are reported from all permits other than Segando South.

Selected significant intersections are shown in Table 19, with a minimum thickness of 1 m and a grade of at least 1 g/t Au. Full details of significant intersections drilled by Roscan (of at least 1 m and 0.5 g/t Au), including any higher-grade intervals within the overall intersection, are shown in Appendices 5 to 7. Thicknesses are reported as drilled intervals rather than true thicknesses as there is not enough data in these areas to interpret the dip and strike of the mineralised zones (Appendices 5 to 7).

TABLE 19. SELECTED SIGNIFICANT INTERSECTIONS IN REGIONAL DRILLING (OVER 1 M DRILLED INTERVAL AND AT LEAST 1 G/T AU)						
Permit	Hole	Hole Type	From	То	Drilled Interval (m)	Au (g/t)
Kandiole North	ACKaN-19-06	AC	8	10	2	1.05
Kandiolé North	ACKAN20-39	AC	14	18	4	11.30
Kandiolé North	ACKAN20-39	AC	48	50	2	1.07
Kandiolé North	ACKAN20-60	AC	2	4	2	4.57
Kandiolé North	ACKAN20-82	AC	48	52	4	3.31
	Including		50	52	2	5.32
Kandiolé North	ACKAN20-84	AC	6	8	2	1.46
Kandiolé North	ACKAN20-90	AC	36	38	2	1.97
Kandiolé North	ACKAN20-96	AC	44	46	2	1.14
Kandiolé North	ACKAN20-129	AC	14	18	4	1.23
Kandiolé North	ACKAN20-130	AC	4	6	2	2.46
Kandiolé North	ACKAN20-175	AC	0	2	2	2.09
Kandiolé North	ACKAN20-247	AC	4	6	2	2.64
Kandiolé North	ACKAN20-266	AC	2	4	2	1.01
Kandiolé West	ACKAO20-82	AC	10	12	2	5.51
Mankouké	ACMan-18-54	AC	8	10	2	7.99
Mankouké	ACMan-19-37	AC	12	14	2	16.00
Mankouké	ACMan-19-51	AC	2	4	2	1.92
Mankouké	ACMan-19-51	AC	10	16	6	1.46
	Including		12	14	2	3.08
Mankouké	ACMan-19-51	AC	26	28	2	1.34
Mankouké	ACMan-19-155	AC	18	20	2	2.15
Mankouké	ACMan-19-181	AC	4	6	2	1.31
Mankouké	ACMan-19-189	AC	26	28	2	1.01
Mankouké	ACMan-19-189	AC	26	28	2	1.01
Mankouké	ACMan-19-196	AC	4	6	2	1.59
Mankouké	ACMan-19-200	AC	22	24	2	2.1
Mankouké	ACMan-19-217	AC	6	12	6	1.00
Mankouké	ACMan-19-244	AC	24	26	2	1.75
Mankouké	ACMan-19-248	AC	32	34	2	1.01
Mankouké	ACMan-19-249	AC	32	36	4	1.63
Mankouké	ACMAN20-357	AC	34	38	4	1.29
	Including		34	35	1	3.05
Mankouké	ACMAN20-415	AC	24	28	4	1.75
	Including		24	26	2	2.53
Moussala North	ACMou-18-01	AC	24	30	6	1.62
	Including		26	28	2	2.74
Moussala North	ACMou-18-02	AC	16	24	8	4.98
	Including		22	24	2	16.60

TABLE 19.SELECTED SIGNIFICANT INTERSECTIONS IN REGIONAL DRILLING (OVER 1 M DRILLED INTERVAL AND AT LEAST 1 G/T AU)						
Permit	Hole	Hole Type	From	То	Drilled Interval (m)	Au (g/t)
Moussala North	ACMou-18-02	AC	32	36	4	2.75
	Including		34	36	2	4.81
Moussala North	ACMou-18-17	AC	2	4	2	35.5
Moussala North	ACMou-19-01	AC	0	2	2	1.33
Moussala North	ACMou-19-10	AC	38	44	6	3.82
	Including		42	44	2	8.46
Moussala North	ACMou-19-61	AC	0	2	2	1.96

Note: this table includes selected mineralised intercepts with a grade of at least 1 g/t Au and a drilled thickness of at least 1 m, allowing a maximum of 2 m of waste within the intercept. Full details of significant intercepts (including grades with at least 0.5 g/t Au) are shown in Appendices 5 to 7.

Results from AC drilling in the rest of the permits include several significant intersections along a north-northeast trending fault where it is intersected by northeast and northwest trending structures interpreted in the satellite image interpretation.

Drilling in the Moussala North permit in 2019 identified significant intersections along a northnortheast trend which is also evident in soil and termite sampling.

Further details of the regional drilling are given in Section 7.3.

10.3. DRILLING PROCEDURES

ACA Howe considers that the procedures described by Roscan and summarised in Sections 10.3.1, 10.3.2 and 10.3.3 are consistent with industry standards.

10.3.1. AIRCORE DRILLING

Samples were collected in plastic bags or rice sacks at the base of the cyclone every 1-2 m downhole. Each sack was pre-labelled with the drill hole ID and depth. To limit contamination, the cyclone was blown clean by the drill operator between each sample. Samples were then weighed and split using a three-tier riffle splitter until 2 to 2.5 kg of material was obtained. For some of the drilling, composite samples of 2 m were made by pouring each sample into a one tier riffle splitter until two samples weighing 2 to 2.5 kg were produced. One of these samples was sent for analysis and the other was kept in reserve until assay results were received.

Geological logging was completed on the excess material and included sample colour, % quartz, sample recovery (calculated from the weight of the original sample), level of alteration, rock type and a description of the interval. All samples were photographed and 5 kg was extracted as reference material.

10.3.2. RC DRILLING

Samples were collected every 1 m downhole using the same procedures as for the AC drilling. Each RC sample was described in geological logs including colour, alteration, % quartz, % pyrite, % arsenopyrite, rock type and a description of the interval.

10.3.3. DIAMOND CORE DRILLING

Drilling was completed in runs of 1 m in saprolite and saprock and 3 m in fresh rock to maximise recovery. Drill core was carefully cleaned using water at the drill site and then placed in core boxes with core blocks indicating the hole depth every metre. At Roscan's field camp, the core was cleaned again, photographed and a quick log was completed by a geologist. Detailed logging was completed on hard copy logging sheets and then entered to Excel. Prior to March 2020, on completion of the geological logging, the drill core was reviewed by a Senior Geologist and any additional details were added. Data recorded included rock type, the interpreted original rock type, colour, and the presence of structures and various minerals. It is understood that this practice will continue once the site can be accessed by international staff (borders are currently closed due to COVID-19).

Sample intervals were selected and marked on the core boxes during logging and were generally 1 m in length though ranged from 0.4 m to 3 m. Few intervals were sampled with lengths at the upper end of this range and only where core loss meant that it was not possible to sample narrower intervals. Samples generally cross geological boundaries as there are only subtle variations in places. Core was split in half using a diamond core saw or a knife in the soft saprolite. Both halves of the core were placed back into the core tray for sampling. The core saw or knife was washed between samples to limit contamination. Sampling was completed by Roscan technicians under the supervision of a geologist. Half core samples were placed in a plastic bag with a unique ID. Rubbly intercepts were sampled by placing grab samples of approximately half the material along the intercept into the sample bag.

10.4. RECOVERIES

The diamond core drilling in the 2018-19 programme had an average recovery of 93%, while the diamond drilling in 2020 had an average recovery of 94%.

Material recovered from the cyclone in AC and RC drilling was weighed allowing recoveries to be estimated. However, due to the limited density data for the various weathering horizons, recovery percentages are erratic. As an alternative ACA Howe used the weight of the material recovered for each interval drilled in the Mankouké permit in the 2020 programme to provide an estimate of the recovery compared to the expected volume of each interval (rather than the weight) based on the hole diameter and interval length. The following calculation was used:

Field weight (g) / Expected volume (cm³)

The following samples were removed prior to assessment of the data:

- Intervals drilled in the overburden.
- Intervals drilled in fresh rock no assays above 0.5 g/t Au.
- Samples where weights had not yet been recorded.
- One sample which appeared to be significantly overweight (174 kg), likely a data entry error.

Figures 55, 56 and 57 and Tables 20 and 21 show the mean of the field weight divided by the volume against grades. Figure 55 implies a consistent decrease in recovery with increasing grade in the AC drilling. While the recovery does decrease in the RC drilling for samples above 0.5 g/t Au, the recovery does not continue to decline as grade increases.

In the AC drilling, the recovery in saprolite appears to consistently decrease with increasing grade (Figure 56). The same pattern is not seen in the saprolite in the RC drilling, but does appear in the saprock horizon (Figure 57). However, the data includes few higher-grade samples in the saprock horizon so this may not be representative.

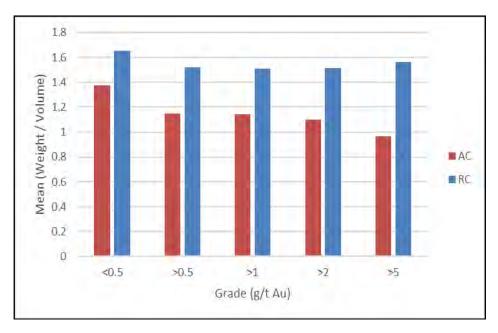


Figure 55. Comparison of Recoveries in AC and RC Drilling

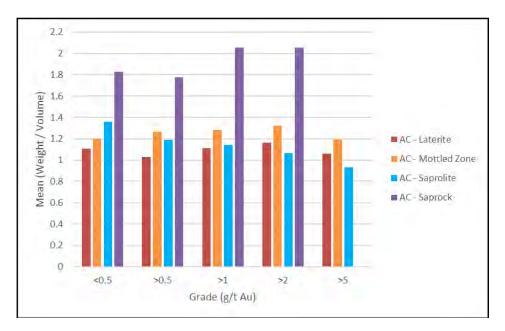


Figure 56. Comparison of AC Drilling Recoveries by Grade and Weathering Horizon

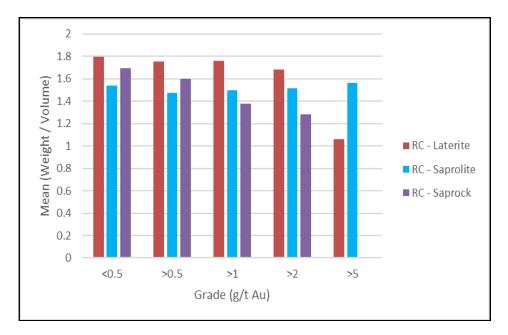


Figure 57. Comparison of RC Recoveries by Grade and Weathering Horizon

	TABLE 20.AC RECOVERIES					
Grade (g/t Au)	Horizon	Mean Weight (g) / Volume (cm3)	Number of Samples			
<0.5	All	1.376	6135			
>0.5	All	1.1505	581			
>1	All	1.1438	345			
>2	All	1.1024	188			
>5	All	0.9636	58			
<0.5	Laterite	1.1069	1449			
>0.5	Laterite	1.0287	167			
>1	Laterite	1.1132	83			
>2	Laterite	1.1653	40			
>5	Laterite	1.0606	8			
<0.5	Mottled zone	1.1995	51			
>0.5	Mottled zone	1.2683	18			
>1	Mottled zone	1.2829	12			
>2	Mottled zone	1.323	8			

TABLE 20.AC RECOVERIES				
Grade (g/t Au)	Horizon	Mean Weight (g) / Volume (cm3)	Number of Samples	
>5	Mottled zone	1.1954	3	
<0.5	Saprolite	1.3576	3602	
>0.5	Saprolite	1.1906	392	
>1	Saprolite	1.1437	249	
>2	Saprolite	1.0648	139	
>5	Saprolite	0.9322	47	
<0.5	Saprock	1.8288	993	
>0.5	Saprock	1.775	4	
>1	Saprock	2.0552	1	
>2	Saprock	2.0552	1	

	TABLE 21.RC RECOVERIES				
Grade (g/t Au)	Horizon	Mean Weight (g) / Volume (cm3)	Number of Samples		
Overall	All	1.6344	1394		
<0.5	All	1.6536	1195		
>0.5	All	1.5191	199		
>1	All	1.5077	97		
>2	All	1.5155	46		
>5	All	1.562	21		
<0.5	Laterite	1.7983	161		
>0.5	Laterite	1.7526	27		
>1	Laterite	1.7619	7		
>2	Laterite	1.6838	4		
>5	Laterite	1.0606	8		
< 0.5	Saprolite	1.5381	745		
>0.5	Saprolite	1.4745	161		

TABLE 21.RC RECOVERIES				
Grade (g/t Au)	Horizon	Mean Weight (g) / Volume (cm3)	Number of Samples	
>1	Saprolite	1.4987	82	
>2	Saprolite	1.5161	39	
>5	Saprolite	1.562	21	
<0.5	Saprock	1.6951	187	
>0.5	Saprock	1.5983	11	
>1	Saprock	1.3776	8	
>2	Saprock	1.2829	3	

At this stage, only the recoveries for 2020 drilling in the Mankouké permit have been assessed, though ACA Howe notes that this represents a significant proportion of the drilling completed to date and the majority of the mineralised intersections.

10.5. TWINNING

Where AC, RC and diamond drill holes are in close proximity (Table 22), ACA Howe has made a visual comparison of gold grades and widths (examples are shown in Figures 58 to 62).

TABLE 22. DETAILS O	ABLE 22. DETAILS OF DRILL HOLES COMPARED IN TWIN DRILLING ANALYSIS				
Section ID	AC / RC Hole ID	DD Hole ID			
1375700N	ACMAN20-297	DDMAN20-44			
1375700N	ACMAN20-295	DDMAN20-47			
1375750N	RCMAN20-04	DDMAN20-41			
1375800N	ACMAN20-288	DDMAN20-27			
1365850N	ACMAN19-167	DDMAN20-20			
1365850N	ACMAN19-165	DDMAN20-21			
1365850N	ACMAN19-163	DDMAN20-28			
1375900N	ACMAN20-312	DDMAN20-26			
1375900N	ACMAN20-310	DDMAN20-29			
1365900N	ACMAN20-308	DDMAN20-33			
1376000N	ACMAN20-319	DDMAN20-24			

TABLE 22. DETAILS OF DRILL HOLES COMPARED IN TWIN DRILLING ANALYSIS				
Section ID	AC / RC Hole ID	DD Hole ID		
1376000N	ACMAN20-317	DDMAN20-25		
1376000N	ACMAN20-316	DDMAN20-31		
1376100N	ACMAN20-327	DDMAN20-35		
1376100N	ACMAN20-325	DDMAN20-36		

ACA Howe considers that the results of AC and RC drilling generally correspond reasonably with diamond drilling, though the depths and grades are variable. Comparison is not straight forward due to the dip of the holes and the mineralised zone, the potential nugget effect and therefore the change in gold grades over short distances.

No consistent biases are observed; sometimes the grades in the AC holes are higher and vice versa, or sometimes mineralisation is intersected in the DD hole but not the AC hole and vice versa. Given the deposit type, ACA Howe considers the correlation between AC / RC and DD holes to be acceptable for the purposes used in the technical report, though further assessment is required once the holes have been accurately surveyed. It is recommended that any AC or RC holes drilled to the east are also twinned to assess whether the depths of the mineralised zones show a better correlation.

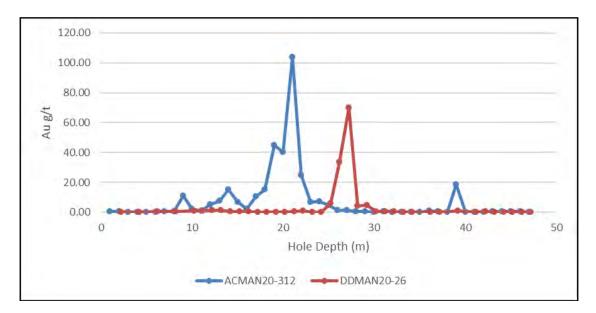


Figure 58. Comparison of Assays from ACMAN20-312 and DDMAN20-26 (collars 1 m apart)

Figure 59. Comparison of Assays from ACMAN20-310 and DDMAN20-29 (collars 4.1 m apart)

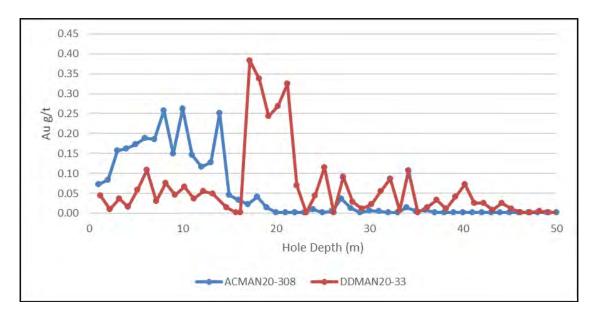


Figure 60. Comparison of Assays from ACMAN20-308 and DDMAN20-33 (collars 4.2 m apart)

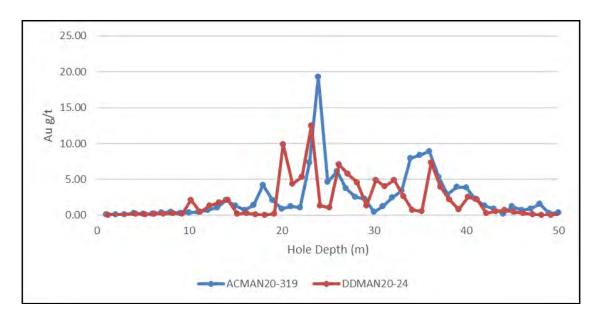


Figure 61. Comparison of Assays from ACMAN20-319 and DDMAN20-24 (collars 1 m apart)

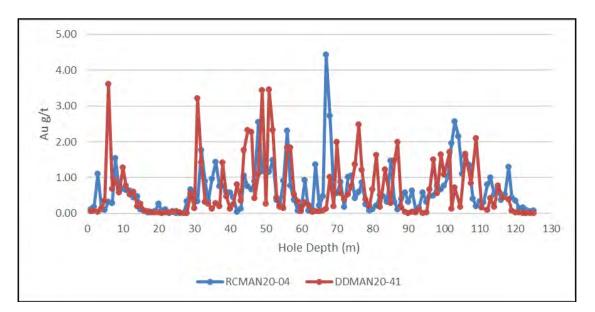


Figure 62. Comparison of Assays from RCMAN20-04 and DDMAN20-41 (collars 1 m apart)

As described above, the results of AC / RC and diamond drilling have been compared. ACA Howe notes the following:

- The assays often broadly identify similar peaks and troughs in gold grade.
- The depths of peaks and troughs do not always correlate. ACA Howe notes that as the diamond drill holes are drilled to the east of the original AC and RC holes, and the mineralisation is interpreted to be steeply dipping, it is expected that the mineralised zones in diamond drilling may be encountered deeper in the hole. It is recommended that any AC and RC holes oriented to the east are twinned to assess whether the mineralised zones show a better correlation.
- The visual assessment has not identified any evidence of contamination or smearing in either the AC or RC samples.

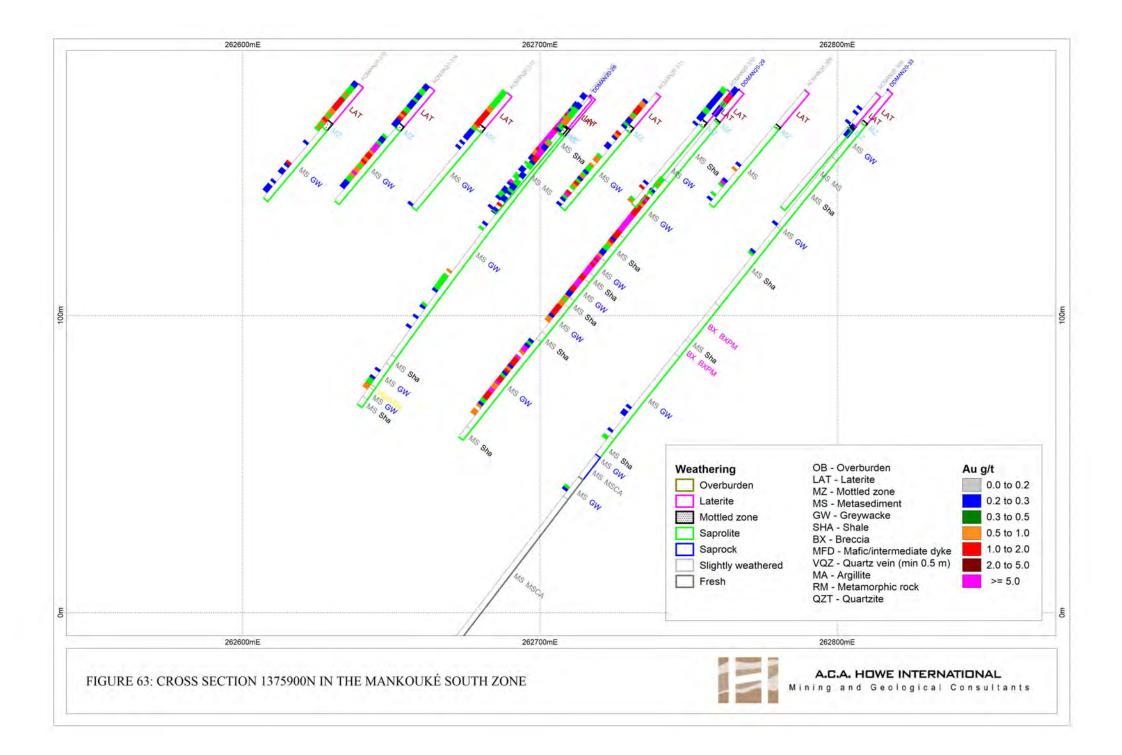
- There is often variation in gold grades and there are some areas where AC assays are anomalous with no correlation with the DD grades. However, it is noted that this may be due to the deposit type and potential nugget effect, leading to large variation in grade over small distances. There is no consistent pattern of AC, RC or DD assays being higher or lower grade.
- As would be expected, the smaller the distance between the drill hole collars then the stronger the correlation between the assays. ACA Howe notes the potential inaccuracy in the location of the 2020 collar data due to the use of handheld GPS data. Accurate collar surveying using DGPS is planned but has not yet been completed as the drilling programme is on-going.
- ACA Howe recommends that unmineralised DD intervals should be checked if the corresponding AC interval was mineralised.

Example sections showing twin drill holes are shown in Figures 63, 64 and 65.

11. SAMPLE PREPARATION, ANALYSES AND SECURITY

11.1. ONSITE PROCEDURES

Roscan's sampling procedures and preparation methods are described in Sections 9.1 and 10.3. Where necessary, drill hole samples were split using riffle splitters, and soil and termite samples were split by coning and quartering.


Prior to dispatch to the laboratory, up to ten samples were placed in a rice sack and stored inside at Roscan's field camp. Details of the samples stored in each rice sack were added to a spreadsheet which was provided to the laboratory when the samples were handed over. Drill core samples are mostly driven to the laboratory in Bamako by a Roscan driver. AC samples are collected from Roscan's camp by a truck from the laboratory. Samples are dispatched either once or twice a week depending on the number of samples produced. ACA Howe considers Roscan's sampling procedures to be consistent with mining industry standards. QA/QC samples were inserted to the sample sequence and this is discussed in Section 11.3.

11.2. LABORATORY PROCEDURES

All soil, termite and drill hole samples from the 2018-19 exploration programme were prepared by Bureau Veritas Mineral Laboratories (Bureau Veritas) in Bamako and then sent to Bureau Veritas in Abidjan, Ivory Coast for analyses. Samples from the 2020 exploration programme (up to the effective date of the report) were prepared and assayed at Bureau Veritas, SGS Mali and ALS Bamako (preparation) and ALS Ouagadougou (analysis) (Table 23).

TABLE 23.LABORATORY ANALYSIS OF SAMPLES IN 2020 (INCLUDING QA/QC SAMPLES)				
Laboratory	Termite Samples	Drill hole Samples		
Bureau Veritas	71	21,901		
SGS	0	4,717		
ALS	3,882	0		

11.2.1. BUREAU VERITAS

Bureau Veritas in Abidjan is accredited to ISO 9001:2015 which indicates that the quality management system in place is of sufficient standard. The laboratory is not yet accredited to ISO/IEC 17025 standard, which enables laboratories to demonstrate competency in the reporting of valid results. However, it is reported by the Operations Manager of Bureau Veritas that the laboratory works by the same procedures as the Bureau Veritas laboratory in Vancouver which is accredited to ISO/IEC 17025 standard. Bureau Veritas is independent of Roscan and acts as a service provider as required.

All samples were logged into the Bureau Veritas system. In the 2018-19 programme, the samples were then crushed to 2 mm, and 250 g was split and pulverized to 200 mesh. From January 2020, 1 kg of material was split and pulverized to 200 mesh (code PRP70-1kg).

All samples were analysed by 50 g fire assay with an atomic absorption (AAS) finish (Code FA451). The lower detection limit for the method is 5 ppb with an upper limit of 10,000 ppb. Samples assaying above the upper detection limit were re-assayed by 50 g fire assay with a gravimetric finish (Code FA550).

11.2.2. SGS

SGS Mali is accredited to ISO/IEC 17025 standard for the chemical analysis of gold samples, demonstrating competency in the reporting of gold assay results.

Samples of drill core and cuttings were prepared in the following sequence:

- Sample drying.
- Sample crushed to 75% passing 2 mm.
- 1.5 kg split by riffle splitter.
- 1.5 kg of 2 mm material pulverized to 85% passing 75 microns in a ring and puck pulverizer.

Samples results received from SGS until 14th June 2020 were analysed by method FAA505, a 50 g fire assay with an AAS finish with a lower detection limit of 0.01 g/t Au. Results received after 14th June 2020 were analysed by method FAE505, which has a detection limit of 1 ppb.

SGS is independent of Roscan and acts as a service provider as required.

11.2.3. ALS

From January 2020, termite samples were prepared at ALS Bamako by the following methods:

- WEI-21 sample weighing.
- LOG-22 samples logged into ALS system.
- CRU-31 fine crushing (70% < 2 mm).
- SPL-21 sample split using a riffle splitter.
- PUL-32 1 kg pulverized to 85% < 75 um.

Samples were then sent to ALS Bamako and analysed by method Au-AA15b (BLEG with LeachWELL).

The cyanide leach tests on material from Central Mankouké, completed in 2019, were conducted by ALS Global in Ouagadougou, Burkina Faso by method Au-AA11b. The material was pulverized and split into two samples of 2 kg on receipt by the laboratory. The samples were rolled for 24 hours and then allowed to stand for 1-2 hours. The solutions were then extracted with DIBK and analysed by atomic absorption spectrometry.

Cyanide leach tests by ALS in 2020 were completed using method Au-AA15b. Pulverized 1 kg samples were sent from ALS Bamako to ALS Ouagadougou in Burkina Faso where the samples were analysed by method Au-AA15b, a cyanide leach test using LeachWELL with an AAS finish. LeachWELL uses Assay Tabs to accelerate the gold leaching process.

ALS Ouagadougou is not accredited for the LeachWELL method, but it is noted that there is currently no accreditation process for the method worldwide. ALS is independent of Roscan and acts as a service provider as required.

11.3. QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC)

Over 70,000 soil, termite, grab and drill hole samples (including QA/QC samples) submitted by Roscan had been analysed by Bureau Veritas, ALS and SGS at the effective date of the report. Details of each sample type and the percentage of QA/QC samples in 2018-19 and 2020 are shown in Tables 24 and 25.

TABLE 24.	2018-19 SAMPLE TYPES AND PERCENTAGE QA/QC SAMPLES				
Sample Type	Total Samples	No. CRM	No. Blanks	No. Duplicates	% Total Samples
Soil	6,145	0	118	121	3.9
Termite	10,366	0	206	208	4.0
AC	15,766	478	553	553	10.0
RC*	782	10	11	11	4.1
DDH**	1,867	78	75	0	8.2

*including RC samples in combined RC-DD holes

**including DD samples in combined RC-DD holes

TABLE 25.2020 SAMPLE TYPES AND PERCENTAGE QA/QC SAMPLES					
Sample Type	Total Samples	No. CRM	No. Blanks	No. Duplicates	% Total Samples
Termite	3,953	0	78	79	4.0
AC	24,807	416	417	417	5.0
RC*	1,546	50	49	50	9.6
DDH**	5,373	286	286	0	10.6

*including RC samples in combined RC-DD holes

**including DD samples in combined RC-DD holes

The number of QA/QC samples submitted in the 2018-19 soil and termite sampling programmes, and the AC and DDH drilling programmes is considered adequate. It is noted that only 4.1% of the total 2018-19 RC samples were QA/QC samples. However, the number of RC samples is a low proportion of the total with the majority of samples being obtained through AC drilling.

To the effective date of the report, Roscan had increased the proportion of QA/QC samples in the 2020 RC and diamond drill holes to 9.6% and 10.6% respectively. No field duplicates were included in the diamond drilling sequence, though sufficient levels were included in the AC and RC sequences. ACA Howe cautions that only 5% of the total AC samples were QA/QC samples. It is noted that Bureau Veritas analyses samples in batches of 50, meaning that at there were always at least two QA/QC samples (CRM, blank or duplicate) per batch. However, ACA Howe recommends that the proportion of QA/QC samples is increased to at least 10%.

Bureau Veritas, ALS and SGS also utilised their own internal QA/QC samples, including blanks, CRM and duplicates, to ensure data quality. While ACA Howe has only checked internal QA/QC from around 5% of the assay certificates, the results for these samples are within an acceptable range of the expected grades and appear to be to industry standards.

11.3.1. CERTIFIED REFERENCE MATERIAL (CRM)

As shown in Figures 66 to 71, the majority of CRM sample assays are within an acceptable range of the certified grade. Table 26 shows the proportion of samples between 2 and 3 standard deviations from the mean and more than 3 standard deviations from the mean. Due to the large error in the samples more than 3 standard deviations from the mean, ACA Howe considers that this was likely to have been caused by incorrect labelling during the 2018-19 drilling programme rather than inaccuracy in the laboratory analysis. These samples are shown in Table 26 and are not displayed on Figures 66 to 71.

In 2020, three samples assayed more than three standard deviations from the mean, though the results were much closer to the expected grade than the samples shown in Table 26 and are therefore more likely to be caused by laboratory error than labelling issues. It is recommended that Roscan examines the results of CRM assays regularly to assess laboratory performance, particularly on CRM's OXG123 and SJ95 for which a small number of results have been outside three standard deviations from the mean.

TABLE 26.SUMMARY OF QA/QC SAMPLE RESULTS				
CRM Code	Number of Samples	% 2-3 SD	% Outside 3 SD	
OXE150	441	7%	0%	
SJ95	12	25%	8%	
OXL135	147	7%	0%	
OXJ137	253	11%	0%	
OXG123	279	11%	1%	
SG84	20	15%	0%	

TABLE 27. CRM >3 STANDARD DEVIATIONS FROM THE MEAN IN THE2018-19 DRILLING PROGRAMME				
CRM ID	Sample ID	Expected Grade (Au g/t)	Assay Grade (Au g/t)	Comments
OXE150	KNAC-43830	0.658	5.65	Possibly OXL135
OXE150	KNAC-43870	0.658	5.67	Possibly OXL135
OXE150	KNAC-44030	0.658	0.97	Possibly OXG123
OXE150	KNAC-44070	0.658	2.52	Possibly OXJ137
OXE150	KNAC-44150	0.658	1.02	Possibly OXG123
OXE150	KNAC-44190	0.658	2.31	Possibly OXJ137
OXE150	KNAC-44270	0.658	1.08	Possibly OXG123
OXL135	KNAC-44010	5.587	2.58	Possibly OXJ137
OXL135	KNAC-44050	5.587	0.67	Possibly OXE150
OXL135	KNAC-44090	5.587	1.01	Possibly OXG123
OXL135	KNAC-44130	5.587	2.36	Possibly OXJ137
OXL135	KNAC-44170	5.587	0.66	Possibly OXE150
OXL135	KNAC-44210	5.587	0.99	Possibly OXG123
OXL135	KNAC-44250	5.587	2.59	Possibly OXJ137
OXL135	KNAC-42430	5.587	0.62	Possibly OXE150
OXL135	KNAC-40710	5.587	0.64	Possibly OXE150
OXJ137	KNAC-44910	2.416	0.64	Possibly OXE150
OXJ137	KNRCDD-46250	2.416	1.02	Possibly OXG123
OXG123	KNRCDD-46150	1.008	2.51	Possibly OXJ137

CRM OXE150 - Certified gold grade: 0.658 g/t Au, 441 samples

Samples between 2 to 3 standard deviations from certified grade: 29 (7%) Samples more than 3 standard deviations from certified grade: 0 (0%)

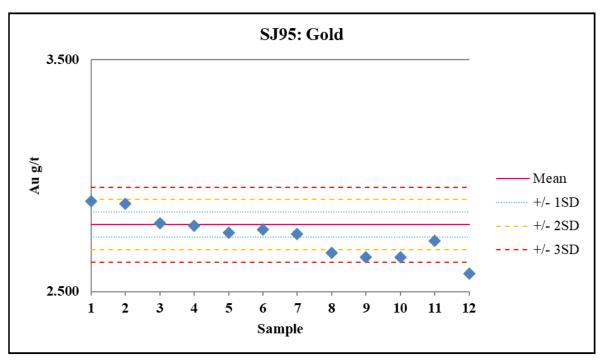



Figure 66. Chart showing the results of analysis of CRM sample OXE150

CRM SJ95 - Certified gold grade: 2.789 g/t Au, 12 samples

Samples between 2 and 3 standard deviations from certified grade: 3 (25%) Samples more than 3 standard deviations from certified grade: 1 (8%)

CRM OXL135 – Certified gold grade: 5.587 g/t Au, 147 samples

Samples between 2 and 3 standard deviations from certified grade: 10 (7%) Samples more than 3 standard deviations from certified grade: 0 (0%)

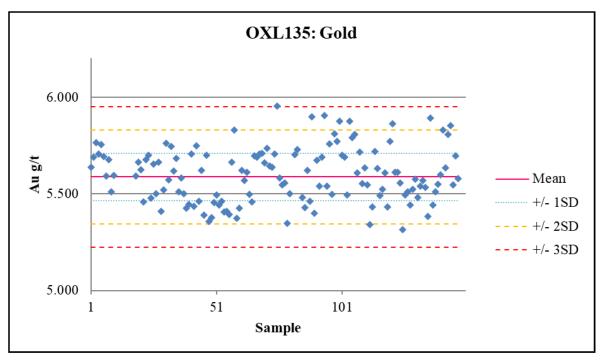


Figure 68. Chart showing the results of analysis of CRM sample OXL135

CRM OXJ137 – Certified gold grade: 2.416 g/t Au, 253 samples

Samples between 2 and 3 standard deviations from certified grade: 27 (11%) Samples more than 3 standard deviations from certified grade: 0 (0%)

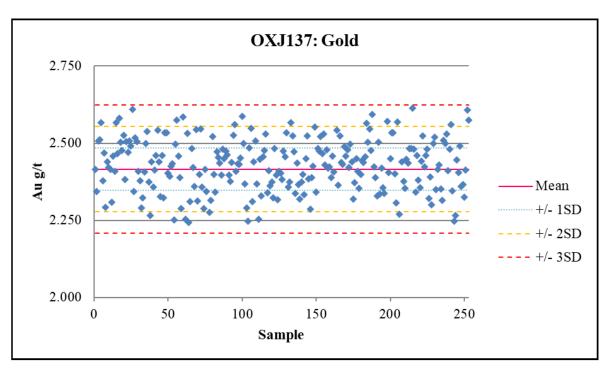


Figure 69. Chart showing the results of analysis of CRM sample OXJ137

CRM OXG123 - Certified gold grade: 1.008 g/t Au, 279 samples

Samples between 2 and 3 standard deviations from certified grade: 32 (11%) Samples more than 3 standard deviations from certified grade: 2 (1%)

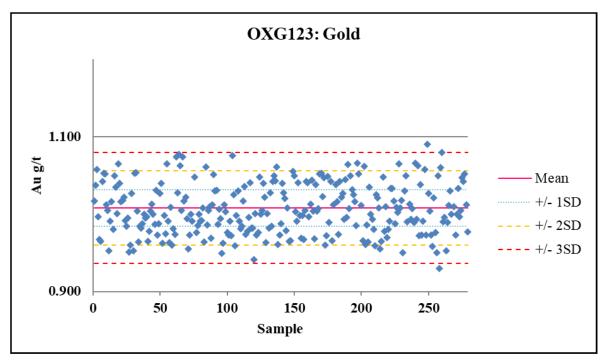
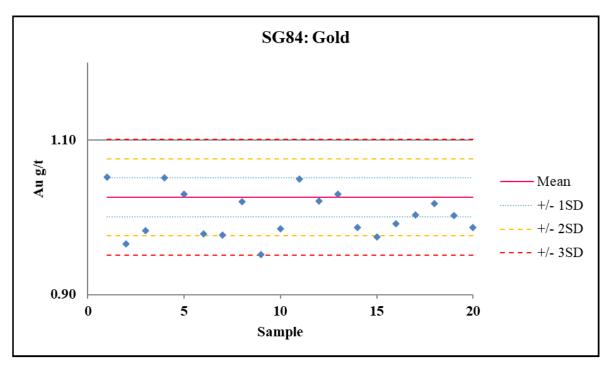
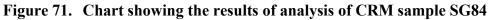




Figure 70. Chart showing the results of analysis of CRM sample OXG123

CRM SG84 – Certified gold grade: 1.026 g/t Au, 20 samples

Samples between 2 and 3 standard deviations from certified grade: 3 (15%) Samples more than 3 standard deviations from certified grade: 0 (0%)

11.3.2. BLANKS

Results from 1,234 of the blank samples submitted by Roscan had been received at the effective date of the report. 1,232 of these samples returned grades below detection limit as expected. Two samples returned grades of 7 and 9 ppb Au indicating some minor contamination, although both are within the range of two times detection limit and are considered to be acceptable.

11.3.3. DUPLICATES

A total of 970 AC samples were duplicated in the 2018-19 and 2020 drilling programmes (to the effective date of the technical report) to test laboratory precision. As shown in Figure 72, the AC duplicates generally plot near the expected grade (x=y line) and the R^2 value of 0.97 indicates a strong positive correlation. However, there are occasional duplicate samples which have a significantly different grade than that reported for the original sample, for example an original grade of 0.027 g/t Au and a duplicate grade of 0.246 g/t Au. These samples with high variability may indicate a nugget effect.

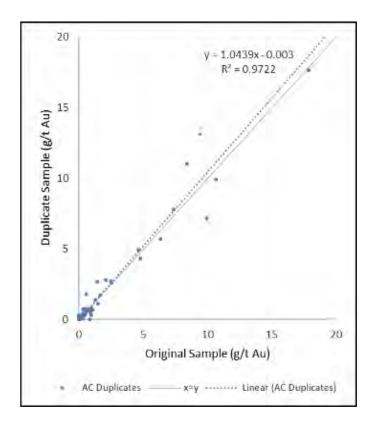


Figure 72. Chart showing the results of analysis of AC sample duplicates (Au g/t)

Over the course of the 2018-19 and 2020 drilling programmes (to the effective date of the report), 61 RC samples were duplicated. Similarly to the AC samples, the RC samples show a strong positive correlation and generally plot close to the expected grade (x=y line) (Figure 73).

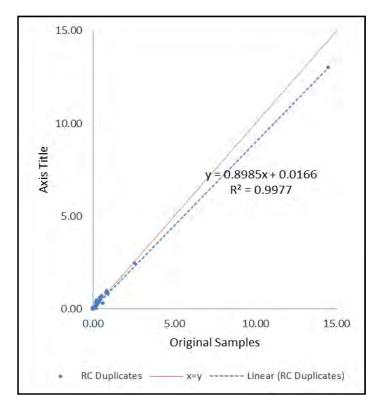


Figure 73. Chart showing the results of analysis of RC sample duplicates (Au g/t)

11.3.4. RE-ASSAYS

As described in Section 12.1, ACA Howe's onsite verification sampling completed in 2019 returned grades that were generally higher than the originals. Therefore, a programme of re-assaying was completed by Roscan, including the sample types shown in Table 28. The original samples were assayed by Bureau Veritas is Abidjan, with the exception of ACA Howe's ¹/₄ core samples which were analysed by SGS in Bamako, and the re-assays were performed by ALS in Bamako.

TABLE 28.DETAILS OF SAMPLES RE- ASSAYED BY ROSCAN					
Sample Type	Number of Samples				
AC rejects	141				
AC pulps	141				
DD rejects	46				
DD pulps	46				
DD ¼ core	5				
RC rejects	6				
RC pulps	6				
RC-DD rejects	14				

TABLE 28.DETAILS OF SAMPLES RE- ASSAYED BY ROSCAN				
Sample Type Number of Samples				
RC-DD pulps 14				
Total 419				

The results of the re-assays of ACA Howe's ¹/₄ core samples are shown in Table 29 and Figure 75. As described in Section 12, only one of five ACA Howe ¹/₄ core samples assayed within the range of the original sample interval. The remainder returned grades significantly above the original assays. Of the five follow-up assays sent for analysis at ALS, four were within the original range of the samples analysed by Bureau Veritas, so the original Bureau Veritas results are considered to be reliable.

TABLE 29.COMPARISON OF DUPLICATE CORE SAMPLE ASSAYS							
Bureau Veritas (Roscan original ½ core, g/t Au)SGS (ACA Howe ¼ core, g/t Au)ALS (Roscan ¼ cor g/t Au)							
0.95 to 1.53	4.88	1.23					
5.62 to 13.70	16.2	13.15					
4.38 to 7.68	8.75	4.67					
1.57 to 2.81	2.71	2.79					
0.07 to 0.39	0.59	0.5					

Two AC pulps and rejects from the original analysis by Bureau Veritas were duplicated by ACA Howe, and subsequently re-assayed at ALS (Table 30). For the first sample, both the pulp and the reject assayed significantly closer to the original assay than ACA Howe's sample. The re-assayed pulp grade was closer to the original but the reject was significantly lower grade than the other results.

TABLE 30. COMPARISON OF DUPLICATE AC SAMPLE ASSAYS							
Bureau Veritas (Roscan original sample, g/t Au)SGS (ACA Howe sample, g/t Au)ALS (original sample pulp, g/t Au)ALS (original sample reject g/t Au)							
4.18	6.57	4.92	4.39				
6.75	7.57	7.19	1.205				

The results of re-assays with original grades greater than 0.5 g/t Au are summarised in Table 31. The pulp and reject samples are generally in a reasonable proximity to the original results, considering that the results are highly dependent on the distribution of gold grains within the sample. Only a small number of results are available for the RC, RCDD and diamond core samples. However, a high

TABLE 31. COMPARISON OF RE-ASSAYS WITH ORIGINAL GRADES ABOVE 0.5 G/T AU							
Drill Hole Type	Sample Type	Total Samples	Within 10% of Original	Within 25% of Original	Within 50% of Original	Comments	
AC	Pulp	95	44	71	87	51% re-assays lower	
AC	Reject	95	44	67	79	44% re-assays lower	
DD	Core	5	20	40	80	80% re-assays lower	
DD	Pulp	34	38	82	88	38% re-assays lower	
DD	Reject	35	31	57	74	40% re-assays lower	
RC	Pulp	5	20	80	80	80% re-assays lower	
RC	Reject	5	20	60	80	40% re-assays lower	
RCDD	Pulp	4	25	50	50	50% re-assays lower	
RCDD	Reject	4	50	50	75	50% re-assays lower	

proportion of the re-assays are within 50% of the original assays. 62% and 60% of the DD pulp and reject re-assays returned a higher grade than the originals. It is noted that overall, the pulp samples show a stronger correlation with the original samples than the rejects.

The correlation of the results (all grades) is shown on Figures 74 to 77. Trendlines shown on Figures 74 and 75 are influenced by outliers. When these outliers are removed the trendlines are closer to the expected results (x=y line), though for the DD samples the trendline still shows that the re-assays tend to be of a slightly higher grade than the originals. In contrast to this, the results of the AC re-assays tend to be slightly lower grade than the originals.

Variation in the grade of the original samples and the re-assays of pulps and rejects are evident in samples from all drill types. For example, an AC pulp grade of 8.27 g/t Au was reported against an original grade of 0.31 g/t Au and a reject re-assay grade of 0.838 g/t Au. In another example, a reject grade of 0.036 g/t Au was reported, with a pulp grade of 4.16 g/t Au and an original assay grade of 7.99 g/t Au. This is likely to be due to the distribution of gold grains in the original sample (nugget effect) rather than laboratory error.

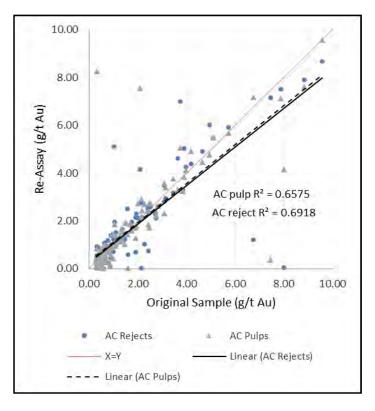


Figure 74. Chart Showing the Results of AC Pulp and Reject Re-Assaying

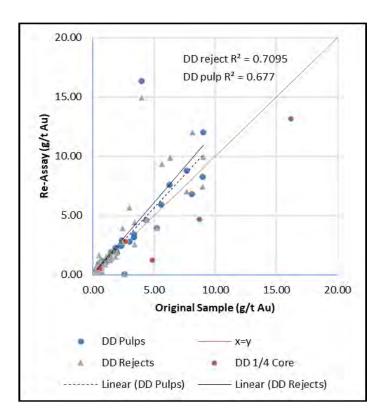


Figure 75. Chart Showing the Results of Diamond Drill Hole Pulp, Reject and Quarter Core Re-Assaying

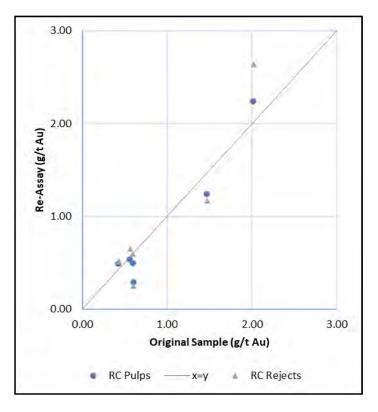


Figure 76. Chart Showing the Results of RC Pulp and Reject Re-Assaying

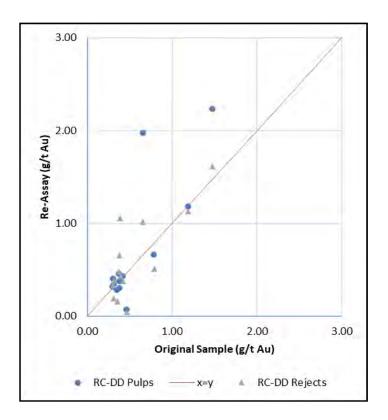


Figure 77. Chart Showing the Results of RC-DD Pulp and Reject Re-Assaying

11.3.5. CYANIDE LEACH TESTS – MANKOUKE CENTRAL

In February 2019, 39 AC and 31 RC samples were sent to the ALS Global laboratory in Ouagadougou via the ALS Global facility in Bamako in order to confirm the significant results received from samples analysed by fire assay. Each sample was split into two 2 kg samples by the laboratory and both were analysed by method Au-AA11c, a cyanide leach with atomic absorption finish (described in Section 11.2). One sample was assigned the original sample number and the other was assigned the original sample number followed by a 'D'.

The results show a strong positive correlation between the two sets of cyanide leach samples (Figure 78) and both cyanide leach samples against the original grades reported from fire assay (Figures 79 and 80). However, Figures 79 and 80 show that the cyanide leach grades tend to be higher than the original fire assay grades, with means of 3.32 and 3.09 for the cyanide leach samples and 3.01 for the fire assay samples. This difference appears to increase at higher grades, though only a small number of higher-grade samples were analysed by cyanide leach.

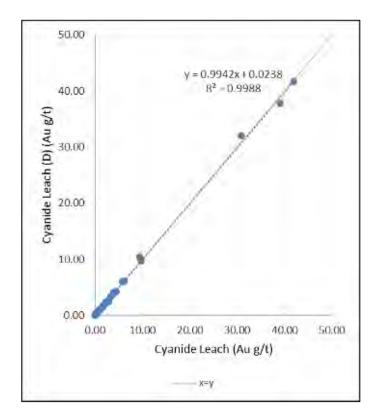


Figure 78. Chart showing a comparison of samples analysed by cyanide leach

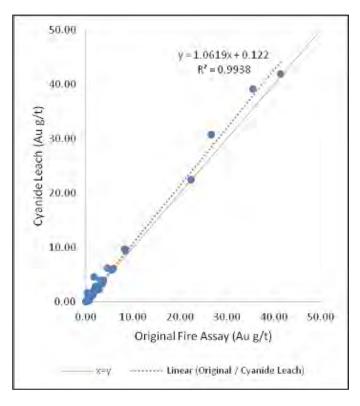


Figure 79. Chart showing a comparison of samples analysed by fire assay and cyanide leach

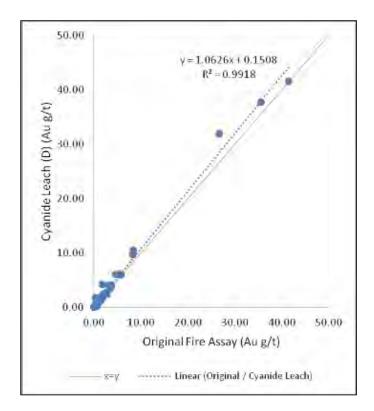
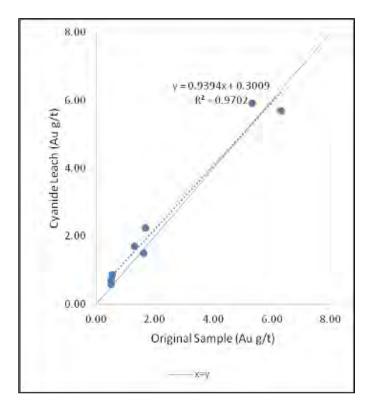



Figure 80. Chart showing a comparison of samples analysed by fire assay and cyanide leach ('D' samples)

A further eight crushed reject samples from Central Mankouké were submitted for cyanide leach testing at ALS in May 2020. The depth of the original samples was varied, including material from the laterite, saprolite and deep saprolite horizons. The samples were pulverised to -75 microns and a 50 g sample was analysed by fire assay for the head grade. There is a strong correlation between the original fire assays and the cyanide leach assays. However, 75% of the cyanide leach assays were higher than the originals (Figure 81).

Figure 81. Chart showing a comparison of samples analysed by fire assay and cyanide leach

11.3.6. REJECT SAMPLES

In February 2019, 39 AC and 31 RC samples were assayed by Bureau Veritas in Ivory Coast in order to confirm the significant results received from samples analysed by fire assay. The samples were pulverised until 85% passed 200 mesh and were then assayed by 50 g fire assay with atomic absorption finish, the same method of analysis as was used for the original samples.

Comparison of the original and reject assays (Figure 82) shows a strong positive correlation between the data, though the grade of the reject samples tends to be higher than the original assays, with means of 3.25 and 3.01 respectively.

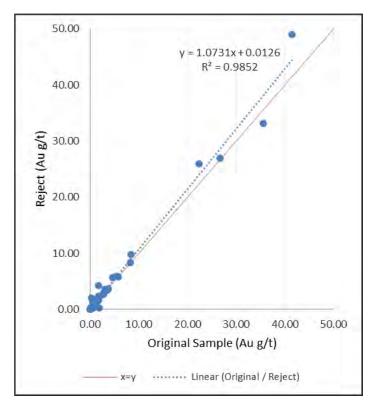


Figure 82. Chart showing a comparison of analysis of reject and original samples

11.4. SUITABILITY OF THE PROCEDURES

The information in Sections 11.1 to 11.3 was provided to ACA Howe by Roscan during the site visit with further detail being provided by email. ACA Howe considers that the sample preparation, analysis and security procedures utilised by Roscan were adequate and appropriate.

QA/QC data for CRM and blank samples is generally within an acceptable range from the expected grades, demonstrating an acceptable level of accuracy and low level of contamination. The duplicate samples, re-assays of pulps and rejects, cyanide leach tests also generally demonstrate an acceptable level of precision and it is noted that outliers are a common issue on gold projects due to the nugget effect.

ACA Howe cautions that a lower proportion of QA/QC samples has been submitted to the laboratory in the 2020 AC programme (to the effective date of the report). ACA Howe recommends that the percentage of QA/QC samples is increased from 5% to at least 10% in future drilling. In addition, while some field duplicates of drill core have been analysed, they should be added to the regular QA/QC programme to ensure that sufficient samples are duplicated in future programmes. This can be completed through the analysis of reject samples where the original sample was above cut-off grade.

The programme of re-assaying appears to show that the original results received from Bureau Veritas are reliable. The re-assays returned grades similar to the originals, while ACA Howe's samples were generally higher grade (Table 29). The reason for the generally higher grades reported by SGS is unknown, but possible causes are the nugget effect or the distribution of mineralisation in the core samples (though some lower grade samples would be expected as well as higher) or contamination at the sampling or assay stage. As the reason for the discrepancy is unknown, in line with international

best practices, ACA Howe recommends that laboratory performance is monitored continually by reanalysing 5% of duplicates at an umpire laboratory, plus the insertion standards and blanks at the usual rate.

12. DATA VERIFICATION

12.1. ONSITE DATA VERIFICATION

Mr Patrick O'Sullivan, Senior Associate Geologist of ACA Howe, visited the Kandiolé Project from 15th to 17th August 2019 and the administration office and sample storage location on 18th August 2019. Although no drilling, geological logging or sampling was ongoing at the time of the visit, the following areas were reviewed with Roscan's geologist:

- Core logging facility and core logging procedures.
- AC chips at the drill sites and in storage.
- A number of drill lines traversing the Mankouké permit and to the north of Moussala North were inspected during the site visit.
- Orpaillage sites.

Roscan acquired the adjacent Dabia Sud permit in July 2020. This area has not been visited and no data verification been completed by ACA Howe.

Verification samples from the Mankouké permit were taken for comparison with Roscan's own sample results. The mineralised zones of the diamond core were resampled in quarter-core size. The saprolite material was soft enough that the remaining half-core could be split using a hammer and cleaver knife, which was cleaned between each sample. This prevented core-loss from the thicker core-saw blade and meant that the core could be split directly in the box and the sample removed using a spoon (also cleaned between samples) to place it in a sample bag. There was limited scope for contamination within the box as the core was split in-situ and removed without disturbance to the remaining quarter core. The intervals sampled depended on the amount of core available to provide approximately 2 kg of sample material for analysis.

The verification samples were bagged onsite, labelled and transported by Mr O'Sullivan to SGS in Bamako on the following day for independent analysis. Sample details and results are shown in Table 32 and examples of mineralised drill core are shown in Figures 83 and 84.

TABLE 32. ACA HOWE DRILL CORE VERIFICATION SAMPLES							
Hole ID	Depth Sampled	Sample ID	Original Grade Range (g/t Au)	Result (g/t Au)	Description		
DDH-Man-19-01	35.1 – 38.1m	0046994	0.95 to 1.53	4.88	Highly altered and friable zone of darker relict breccia and limonite staining		
DDH-Man- 19-04	80.1 – 82.1m	0046995	5.62 to 13.70	16.2	Yellow-red saprolite material with minor dark breccia and thin relict quartz veinlets.		
DDH-Man-19-03	72.1 – 74.1m	0046996	4.38 to 7.68	8.75	Dark breccia material with yellow limonite staining.		

TABLE 32. ACA HOWE DRILL CORE VERIFICATION SAMPLES							
Hole ID	Depth Sampled	Sample ID	Original Grade Range (g/t Au)	Result (g/t Au)	Description		
DDH-Man-19-08	68.1 – 70.1m	0046997	1.57 to 2.81	2.71	Dark breccia material with limonite staining.		
DDH-Man- 19-13	57.0 – 59.0m	0046998	0.07 to 0.39	0.59	Minor graphitic breccia with limonite-stained saprolite from 57 to 58m. Some bleaching or kaolinite clays from 58 to 59m		

Figure 83. DDHMan-19-03: Dark breccia zone to 61.1 m depth followed by pale bleached saprolite or kaolinite clays

Figure 84. DDHMan-19-04: Quartz veinlets from 80.1 m preceded by darker, more friable, breccia material (lower part of photo)

AC drill hole resampling (Table 33) took place at the ground floor lock-up storage in Roscan's Bamako office. Preserved mineralised AC sample intervals were resampled directly from the original sample bags using a plastic scoop, which was cleaned between samples. Attempts were made to mix the sample within the bag prior to sampling, though should further sampling be required in future, samples may require more thorough homogenization.

TABLE 33. ACA HOWE AIRCORE VERIFICATION SAMPLES						
Hole ID	Depth Sampled	Sample ID	Original Result (g/t Au)	ACA Howe Result (g/t Au)	% Difference	
AC-Man-19-06	$46-48\ m$	0046999	4.18	6.57	+57.2	
AC-Man-19-21	$58-60 \mathrm{m}$	0047000	6.75	7.57	+12.1	
AC-Man-19-168	34 - 36 m	0047001	2.62	2.72	+3.8	
AC-Man-19-168	48 – 50 m	0047002	12.9	12.2	-5.4	

The verification samples confirm the presence of significant gold mineralisation in the Mankouké permit of the Kandiolé Project. As shown in Tables 32 and 33, analysis of the verification samples generally returned higher grades than the original samples. As discussed in Section 11, follow-up sampling by Roscan returned grades similar to the original assays reported by Bureau Veritas.

12.2. DESK-BASED DATA VERIFICATION

As exploration by Roscan is on-going, data up to a cut-off date of 5th July 2020 has been supplied to ACA Howe. Further drilling data has been generated by Roscan since this date.

In 2019, Roscan provided ACA Howe with assay certificates showing 12,062 gold assays from the 2018-19 drilling programme. Roscan's 2019 drill hole database contains a total of 20,818 samples, including QA/QC samples. ACA Howe compiled the gold assays from the certificates and compared the 12,062 gold assays with those in the database (58% of the total) and only minor errors were identified as shown in Table 34.

TABLE 34.COMPARISON OF ASSAY CERITIFCATES TO ASSAY GRADES IN ROSCAN DATABASE							
Sample No	Sample Type	ACA Howe Comments					
KNAC-36160	Blank	<5		Results in ppm column rather than ppb			
KNAC-36161	Duplicate	14		Results in ppm column rather than ppb			
KNAC-36162	Air core	16		Results in ppm column rather than ppb			
KNAC-39501	Duplicate	5	52	Data entry error?			

TABLE 34.COMPARISON OF ASSAY CERITIFCATES TO ASSAY GRADES IN ROSCAN DATABASE								
Sample NoSample TypeCertificate AssayDatabase AssayACA Howe CommentsSample NoType(ppb)(ppb)(ppb)								
KNAC-39502Air core<535Data entry error?								
KNAC-39503	KNAC-39503Air core<516Data entry error?							

In July 2020, Roscan provided ACA Howe with the assay certificates for the 2020 drilling completed to the effective date of the report. Roscan's 2020 drill hole database contained a total of 30,803 samples at the effective date of the report, including QA/QC samples and samples for which results were awaited from the laboratory. ACA Howe compiled gold assays shown on the certificates for AC, RC and diamond drilling and compared these with 10% of the samples in the database. No errors were identified.

Considering the small number of discrepancies identified in the 2018-19 assay data and the absence of errors in the 2020 assay data, it is concluded that the database relates very closely to the available assay certificates and is therefore a reliable representation of the results received from the laboratory.

In addition to the above, the drill hole data was imported to Micromine exploration and mining software and was validated by running automated checks to establish the condition and validity of the data. Survey data for the diamond drill holes in the 2018-19 programme was not available in a suitable format for import to Micromine at the time of ACA Howe's 2019 report and has not been updated. Therefore, it has not been checked for errors.

Of the 2020 data, only the collar, survey, assay, lithology and structural data was imported and validated.

Micromine data validation checks were completed for the following:

- 1. Duplicate drill holes.
- 2. One or more collar coordinates missing in the collar file.
- 3. FROM or TO missing in the assay file.
- 4. FROM > TO in the assay file.
- 5. Sample intervals non-contiguous.
- 6. Overlapping sample intervals.
- 7. First sample $\neq 0$ m in the assay file.
- 8. First survey $\neq 0$ m in the survey file.
- 9. Multiple surveys for the same depth.
- 10. Azimuth not between 0 and 360 degrees in collar or survey file.
- 11. Angle not between 0 and 90 degrees in collar or survey file.
- 12. Azimuth or angle missing in survey file.
- 13. Depth of hole less than depth of final sample.
- 14. Down hole survey depth greater than drill hole depth.

A total of 38 errors were identified in the 2018-19 database which consists of 15,530 entries (Table 35). In the 2020 database received from Roscan, 75 errors were identified, though the majority have now been rectified (Table 36). Considering that Roscan's drilling programme is on-going, ACA

TABLE 35.SUMMARY OF ERRORS IDENTIFIED IN 2018-19 DRILL HOLEDATABASE							
File	Error types						
AC Collar	608	2	Duplicate hole				
AC Assay	12,436	35	Interval beyond hole depth Missing from or to Missing interval				
RC Collar	3	0	N/A				
RC Assay	370	0	N/A				
DDH Collar	19	0	N/A				
DDH Assay	2,094	1	Missing interval				

Howe considers that the number of errors is acceptable, although data validation procedures should be implemented going forward.

TABLE 36.	36. SUMMARY OF ERRORS IDENTIFIED IN 2020 DRILL HOLE DATABASE						
File	Number of Entries	Number of Errors	Error types				
Collar	997	3	Incorrect northing Incorrect elevation				
Survey	1,125	2	Incorrect dip				
Assay	26,599	22	Interval beyond hole depth Overlapping interval From >= To				
Lithology	3,032	48	Interval beyond hole depth Missing interval From >= To Overlapping intervals				
Structure	54	0	N/A				

12.3. SUITABILITY OF THE DATA

ACA Howe has completed both onsite and desk-based verification of Roscan's data on the Kandiolé Project. As noted in Section 12.1, onsite verification was completed in August 2019. ACA Howe considers that the data is suitable for the purposes used in this technical report and that procedures are in line with industry standard practices. Some risks and uncertainties within the data are as follows:

- There is some variability between the results of AC, RC and diamond drilling but no consistent or clear pattern is evident. This may reflect differences related to the presence or absence of coarse gold grains within the saprolite.
- It has not been possible to estimate the true thickness of the mineralised intersections at Mankouké South due to the stage of the drilling programme and the available data. The mineralisation at Mankouké South appears to be dipping steeply to the west though it is likely that zones with shallower to sub-horizontal dips are present in the oxide zone. It is considered likely that holes oriented to the west may overestimate the thickness of the westerly dipping mineralised zones. Additional results received by Roscan for holes oriented to the east since the effective date of this report should delineate the broad geometry of these zones. Only limited drill hole structural data is available in this zone at the effective date of the report.
- Similarly, it has not been possible to estimate the true thickness of the mineralised intersections at Central Mankouké. Initial modelling has provided an indication of potential true thicknesses though this requires additional drill testing. No drill hole structural data is available in this zone at this stage.

13. MINERAL PROCESSING AND METALLURGICAL TESTING

Roscan has completed preliminary testwork on 147 crushed reject samples from Central Mankouké and Mankouké South. More detailed testwork will be required, however it is considered that the preliminary testwork provides an initial indication of the recoveries that may be achieved.

13.1. CENTRAL MANKOUKÉ

Eight crushed reject samples from drill holes in the Central Mankouké area were submitted for cyanide leach testing at ALS in May 2020. The depth of the original samples was varied, including material from the laterite, saprolite and deep saprolite horizons. The samples were pulverised to -75 microns and a 50 g sample was analysed by fire assay for the head grade.

Table 37 shows an average recovery of 86.9%, though recovery in five of the samples was greater than 93.9%, with these samples averaging 96.8% recovery. The lowest recovery was from sample KNDD-59979, a low-grade sample (original pulp grade of 0.41 g/t Au) which was logged as a saprolitised greywacke. ACA Howe recommends that these samples are re-examined and that core from sample KNDD-59979 is submitted for petrological study.

TABLE 37. RESULTS OF CYANIDE LEACH TESTS FROM CENTRAL MANKOUKÉ						
Sample ID	Pulp Grade (g/t Au)	Bottle Roll Grade (g/t Au)	Tail grade (g/t Au)	Bottle Roll + Tail (g/t Au)	Recovery (%)	
KNAC-59977	0.5	0.57	0.01	0.58	98.3	
KNAC-59980	1.66	2.20	0.05	2.25	97.8	
KNAC-59978	0.66	0.69	0.02	0.71	97.2	
KNAC-59981	1.22	1.14	0.35	1.49	76.5	

TABLE 37. RESULTS OF CYANIDE LEACH TESTS FROM CENTRAL MANKOUKÉ						
Sample ID	Pulp Grade (g/t Au)	Bottle Roll Grade (g/t Au)	Tail grade (g/t Au)	Bottle Roll + Tail (g/t Au)	Recovery (%)	
KNDD-59983	5.61	5.35	0.35	5.70	93.9	
KNAC-59984	4.75	5.74	0.17	5.91	97.1	
KNDD-59979	0.41	0.43	0.44	0.87	49.3	
KNAC-59982	1.37	1.45	0.25	1.70	85.3	

13.2. MANKOUKÉ SOUTH

139 crushed reject samples from drill holes DDMAN20-41 and DDMAN20-47 were submitted to ALS for testing by BLEG with Leachwell (Au-AA15b - 1 kg). Samples were pulverized to -75 microns and a 50 g sample was analysed by fire assay for the head grade.

Samples selected by Roscan were from the following zones, which are considered to include the types and styles of mineralisation currently known in the project area:

- Laterite.
- Saprolitised greywacke with no fresh pyrite.
- Saprolitised greywacke and shale with no fresh pyrite.
- Saprolitised greywacke with fresh pyrite.
- Greywacke and shale with fresh pyrite.
- Fresh breccia.

Overall recovery averaged 89%, ranging from 40% to 98.9% for individual samples. The average recovery for each zone is shown in Table 38. The average for the samples from the saprolite zone with no fresh pyrite is 96.1%, whereas for saprolite samples with pyrite the average decreases to 83.6%. The presence of fresh pyrite indicates a lower degree of weathering, which may contribute to the lower gold recoveries in these zones.

TABLE 38. RESULTS OF CYANIDE LEACH TESTS FROM MANKOUKÉ SOUTH						
Lithology	Weathering	Number of Samples	Pyrite	Recovery (%)		
Laterite	Laterite	7		92.8		
Greywacke	Saprolite	45	No fresh pyrite	96.5		
Greywacke / shale	Saprolite	4	No fresh pyrite	91.6		
Greywacke	Saprolite	57	With fresh pyrite	84.0		
Greywacke / shale	Saprolite	12	With fresh pyrite	82.0		
Breccia	Fresh	14		90.5		

14. MINERAL RESOURCE ESTIMATES

No mineral resources have been identified by Roscan.

15. MINERAL RESERVE ESTIMATES

No mineral reserves have been identified by Roscan.

16. MINING METHODS

Not applicable at the current stage of the project.

17. RECOVERY METHODS

Not applicable at the current stage of the project.

18. PROJECT INFRASTRUCTURE

Not applicable at the current stage of the project.

19. MARKET STUDIES AND CONTRACTS

Not applicable at the current stage of the project.

20. ENVIRONMENTAL STUDIES, PERMITTING AND SOCIAL OR COMMUNITY IMPACT

Not applicable at the current stage of the project.

21. CAPITAL AND OPERATING COSTS

Not applicable at the current stage of the project.

22. ECONOMIC ANALYSIS

Not applicable at the current stage of the project.

23. ADJACENT PROPERTIES

There are numerous gold deposits in the region, both at the mining and advanced exploration stages. Gold mining operations include Fekola, Sadiola, Gounkoto, Yatela and Loulo. In addition, exploration projects similar to Roscan's Kandiolé Project are on-going and producing significant

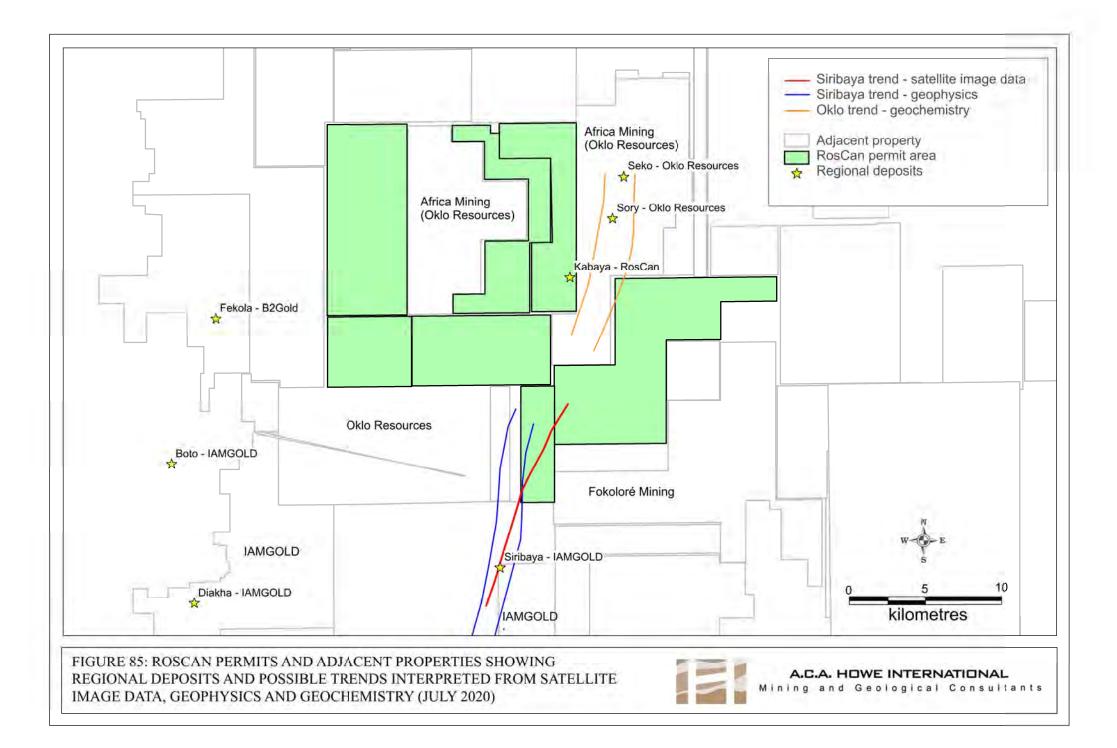
results. The projects in closest proximity to the Kandiolé Project are described below and shown on Figure 85.

23.1. IAMGOLD CORPORATION

IAMGOLD is the owner of the Siribaya Project, which includes the Siribaya Zone 1B and Taya-Ko gold deposits, approximately 4.5 km to the south of the Mankouké permit, and the Diakha gold deposit, around 16 km southwest of the Kandiolé West permit. A press release on IAMGOLD's website dated 30th January 2019 includes the Mineral Resource Estimates shown in Table 39. Cut-off grades range from 0.35 to 0.45 g/t Au.

TABLE 39.TOTAL INDICATED AND INFERRED RESOURCES AT THE ZONE1B, TAYA-KO AND DIAKHA DEPOSITS, DATED 31 ST DECEMBER 2018							
Domosit	Indicated Inferred						
Deposit	Tonnes	g/t Au	oz Au	Tonnes	g/t Au	oz Au	
Zone 1B	2,102,000	1.9	128,500	4,094,000	1.52	199,700	
Taya-Ko				882,000	1.02	28,900	
Diakha	15,929,000	1.2	615,300	18,203,000	1.62	947,500	

Geophysical interpretation appears to show structures from the area of the Siribaya Zone 1B and Taya-Ko deposits continuing into Roscan's permit areas. The mineralisation identified in these deposits is described as being hosted in quartz stockwork and breccia, with hydrothermal and polymictic breccia and associated stringer zones, with differing dips (RPA, 2019). Drilling by Roscan has provided evidence of gold in breccia zones and quartz veinlets in the Kandiolé Project.


However, ACA Howe is not able to verify the information on the Siribaya Project and it is not necessarily indicative of similar mineralisation on the Kandiolé Project.

23.2. OKLO RESOURCES LIMITED

Oklo Resources is the owner of the Dandoko and Moussala Projects, which are directly adjacent to Roscan's Kandiolé Project. Oklo Resources' 2018 annual report shows a north-northeast trending zone of anomalies identified through auger drilling which, if they continue to the south-southwest, would be present in Roscan's Niala permit. Interpretation of satellite image data by ACA Howe shows a north-northeast trending structure continuing into the Niala Permit although this requires confirmation on the ground. Oklo Resources' follow up work on these anomalies with aircore and diamond drilling has been successful in identifying intersections considered to be significant, details of which can be found in company press releases.

However, ACA Howe is not able to verify the information above and it is not necessarily indicative of mineralisation on Roscan's Kandiolé Project.

24. OTHER RELEVANT DATA AND INFORMATION

Not applicable.

25. INTERPRETATIONS AND CONCLUSIONS

The Kandiolé Project is strategically located in the Kéniéba region of Mali where significant gold deposits have been identified. These are associated with strong regional structures and Birimian lithologies that also occur within the Roscan permits. The significant mineralised zones identified by Roscan to date are Mankouké South and Central Mankouké. In addition, Roscan acquired the Dabia Sud permit in July 2020, which includes the Kabaya deposit. These mineralised zones are thought be part of a regional structural zone, extending to the north-northeast from Siribaya (IAMGOLD) in the south, through Mankouké South, Central Mankouké and Kabaya, to the Seko Project (Oklo Resources) to the north.

Exploration by Roscan includes soil and termite geochemical surveys, AC, RC and diamond drilling, interpretation of regional geophysics and a ground IP-resistivity and magnetic survey.

Roscan's 2018-19 drilling programme identified significant mineralisation in the Central Mankouké zone, as well as other isolated areas of the Mankouké permit. In the course of this report, ACA Howe has identified areas where the mineralisation being traced by Roscan may have migrated beyond the drill section lines, suggesting potential for extensions to the currently identified mineralised zones.

In 2020, Roscan has identified significant mineralised zones at Mankouké South, following-up on a single line of AC drilling completed in 2019.

The Dabia Sud permit includes the Kabaya deposit and the Walia and Dissé prospects where significant geochemical anomalies were identified by Ashanti Mali and Robex Resources. ACA Howe considers that the acquisition of the Dabia Sud permit enhances the already highly significant prospectivity of the Kandiolé Project. A mineral resource for the Kabaya deposit was estimated by SGS for the previous owners in January 2019, which comprised indicated resources of 3.17 Mt at 1.03 g/t Au and inferred resources 0.96 Mt at 1.14 g/t Au.

A Qualified Person has not undertaken sufficient work on behalf of Roscan to classify this historical mineral resource as a current mineral resource. Roscan is therefore not treating the historical resource as a current mineral resource. Recommendations for the verification of the historical estimate are discussed in Section 26.

The soil and termite sampling programme completed by Roscan has also identified several strongly anomalous zones which are indicative of further mineralisation in Roscan's other permits. Limited aircore drill testing of the latter anomalies to date has intersected minor zones of gold enhancement, but the drill lines are often too widely distributed to determine the continuity of mineralisation between lines.

There appears to be a strong north-south structural control associated with the mineralisation in the Mankouké permit but a more pronounced east-northeast/west-southwest control to the north of the Moussala North permit. The same stronger east-northeast to west-southwest control at Moussala North is indicated by the more east-west trending orpailleur workings west of Dabia village. It is apparent that there is some concave lithostructural control to the mineralisation. With this in mind it

is recommended drilling azimuths are determined following an evaluation of marked magnetic gradients following the proposed airborne geophysical survey.

ACA Howe has reviewed Roscan's procedures and QA/QC results and has completed data validation including verification sampling and database checks. It is concluded that the data is suitable for the purposes of this technical report and that procedures are in line with standard industry practices. However, some risks and uncertainties within the data are as follows:

- There is some variability between the results of AC, RC and diamond drilling but no consistent or clear pattern is evident. This may reflect differences related to the presence or absence of coarse gold grains within the saprolite. ACA Howe recommends that unmineralised DD intervals should be checked if the corresponding AC interval was mineralised.
- It has not been possible to estimate the true thickness of the mineralised intersections at Mankouké South due to the stage of the drilling programme and the available data. The mineralisation at Mankouké South appears to be dipping vertically or steeply to the west though it is likely that zones with shallower to sub-horizontal dips are present in the oxide zone. It is possible that holes oriented to the west may overestimate the thickness of any westerly dipping mineralised zones. Since the effective date of this report, Roscan has drilled a series of holes oriented to the east which should confirm the broad geometry of these zones. Only limited drill hole structural data is available to date.
- Similarly, it has not been possible to estimate the true thickness of the mineralised intersections at Central Mankouké. Initial modelling has provided an indication of potential true thicknesses though this requires additional drill testing. No drill hole structural data is available in this zone.
- ACA Howe cautions that a lower proportion of QA/QC samples have been submitted to the laboratory in the 2020 AC programme (to the effective date of the report). ACA Howe recommends that the percentage of QA/QC samples is increased from 5% to at least 10%. In addition, while some field duplicates of drill core have been analysed, they should be added to the standard operating procedures for the QA/QC programme to ensure that sufficient samples are duplicated in future. This can be completed through the analysis of reject samples where the original sample was above cut-off grade.

26. RECOMMENDATIONS

Roscan plans to continue with its comprehensive 2020 exploration programme to enable further assessment of the potential of the Kandiolé Project, including the newly acquired Dabia Sud permit. Roscan's proposed programme includes:

- An airborne geophysical survey.
- AC, RC and diamond core drilling.

26.1. DRILLING

Drilling planned by Roscan for the on-going 2020 exploration programme (Phase 1) is summarised in Table 40. It is noted by Roscan that parts of this plan are subject to change based on results.

TABLE 40.DRILLING PLANNED BY ROSCAN					
Area	Drilling Type	Number of Holes	Number of Metres	Comments	
Mankouké South	DD	5	940		
Mankouké Central	DD	9	1,795	On-going programme	
Mankouké Corridor	AC	71	3,550	Including follow up at KL North - 12 AC holes (600 m)	
Kandiolé North	AC	160	8,000		
Moussala North	AC	167	8,350	Including 59 holes (2950 m) planned in 2019	
Niele	AC	275	13,750		
Niala	RC	5	400		
Dabia Sud - Walia	AC		25,000		
Data Grat Katara	DD		2,500	First phase programme, including 4	
Dabia Sud - Kabaya	AC		800	holes twinning holes drilled by Robex Resources and Komet Resources	
	AC		58,650		
Total	RC		400		
	DD		5,325		

ACA Howe has reviewed the details of the planned drilling shown in Table 40 and considers the drill hole locations and number of metres to be reasonable.

As planned by Roscan, further diamond drilling should be utilised to follow-up on significant intersections in the Mankouké South and Central Mankouké areas. In particular, this should help to determine the geometry of the mineralised zones in these areas. At Mankouké South, should the results of the recent diamond drill holes oriented to the east confirm a mineralised zone dipping

As completed by Roscan to date, AC and RC drilling should be used for the following and then followed up with diamond drilling:

- Testing of in-situ surface geochemical anomalies.
- Initial testing of new targets resulting from termite sampling, geophysical interpretation and satellite image interpretation.
- Testing of extensions to isolated intercepts in existing AC drill holes.
- Initial testing of extensions to known mineralised zones where there is insufficient data to confidently plan diamond drilling.

ACA Howe concurs with Roscan's approach of twinning drill holes from each year of the historical drilling at Kabaya. However, it is noted that additional verification drilling will be required on completion of the first phase programme prior to resource estimation.

An extensive AC drill programme is planned at Walia which ACA Howe considers reasonable given the size of the anomalous area. Drill lines oriented east-west and north-south will test for northnorthwest to north-northeast and east-northeast trending structures. ACA Howe notes that regolith mapping at Walia prior to drilling may assist in refining the programme, especially as the anomalous results are from soil rather than termite samples.

At the orpailleur Site de Bilali in the Moussala North permit, it is recommended that drilling is targeted beneath the workings and into the silicified hill above the workings on an azimuth of 330°.

26.2. GEOPHYSICAL SURVEY

Roscan plans to commission an airborne geophysical survey in the fourth quarter of 2020, covering the 288.8 km² Kandiolé Project. The survey will be flown by helicopter at an altitude of 40 m, with a line spacing of 100 m, using NRG's xciteTM Airborne Electromagnetic (AEM) system. It is expected that the closely spaced, low altitude survey will result in significantly more detailed data than the widely spaced regional survey currently available. ACA Howe considers this to be warranted as it will help to confirm the presence of favourable structures, structural intersections and a geological framework for understanding the controls on existing mineralised zones and new target generation.

26.3. ADDITIONAL RECOMMENDATIONS BY ACA HOWE

In addition to Roscan's planned work programme, further recommendations by ACA Howe are described below.

Verification of Kabaya Historical Mineral Resource Estimate

In order to verify the historical estimate at Kabaya as a current mineral resource, ACA Howe recommends the following:

• Confirm the data validation completed by SGS including the QA/QC analysis and checks of assay data against the original laboratory certificates.

- Confirm whether sample recoveries were recorded or could be calculated for Komet's RC drilling.
- Compare the AC and RC drilling to determine whether it is valid to use the AC drilling results in resource estimation.
- As the drilling was completed by previous owners of the project, re-sampling of a proportion of the original sample bags (if available) or pulps from the original analysis (if available) is recommended. If these items are not available, then a proportion of the holes should be twinned using diamond drilling. It is noted that if the original QA/QC data, laboratory certificates and detailed descriptions of procedures are available then it may be possible to reduce the amount of verification drilling required.
- Determine whether a geological model for the deposit can constructed or identify where new holes should be drilled in order to better understand the geology.

Regolith Mapping

Roscan has completed regolith mapping for significant parts of the Kandiolé project. ACA Howe advises that more detailed regolith mapping over the entire Kandiolé Project will allow the assessment of transported anomalies and ranking and prioritisation of anomalies before drilling.

Structural data, such as vein set orientations, should be gathered along with samples from orpailleur excavations during the regolith mapping.

Metallurgical Testwork

ACA Howe recommends that core samples for which lower recoveries were achieved are reexamined and that samples are submitted for petrological study.

On completion of the above, further preliminary metallurgical testwork should be conducted.

General Recommendations

In addition to the above, ACA Howe recommends that the following items are completed in order to advance the project efficiently and in compliance with CIM Best Practices:

- Where possible, continue to collect structural data from diamond drilling. It is noted that this is often not possible in the oxide zone but measurements in fresh rock should be possible.
- Ensure that sufficient duplicates, blanks and CRMs (at least 10%) are included in the sample sequence for all future drilling.
- Reportedly unmineralised DD intervals should be checked if the corresponding AC twin interval was mineralised.
- As the understanding of the mineralisation improves, bulk density measurements should be taken regularly and incorporated into the standard operating procedures for the project.
- All drill holes should be plugged and accurately surveyed with an error of no more than 1 m.
- ACA Howe recommends that the calculation of recoveries is reviewed once accurate density

measurements have been taken for each weathering zone. It is noted that, in general, AC recoveries appear to decrease with increasing grade. Therefore, drilling and sample collection procedures should be reviewed.

• Acquisition of topographical data with a maximum 1 m accuracy, covering the Mankouké South, Central Mankouké and Kabaya areas.

26.4. ESTIMATED BUDGET

Detailed costs were provided by Roscan and were applied to the various categories in the estimated budget in Tables 41 and 42. ACA Howe considers these costs to be reasonable and in line with current costs in the region. Costs for Phase 1 are based on an estimated completion time of 2 months (Table 41).

TABLE 41. ESTIMATED BUDGET FOR PHASE 1	
Item	Cost (CAD)
Exploration Activities	
AC drilling – 58,650 m (CAD \$26 / m)	1,524,900
RC drilling – 400 m (CAD \$75 / m)	30,000
Diamond drilling – 5,325 m (CAD \$275 / m)	1,464,375
Drill hole sample assays – approximately 70,000 including QA/QC samples (CAD \$15 / sample)	1,050,000
Airborne geophysical survey – approximate cost provided by Roscan	400
Regolith mapping and sampling	35,000
Further preliminary metallurgical testwork - assay costs (2,000 samples)	20,000
DTM acquisition	15,000
Sub-total	4,139,675
Personnel	
13 geologists – each at CAD \$3,800 per month	98,800
8 technicians - each at CAD \$3,250 per month	52,000
4 consultant geologists	53,905
11 geological assistants – each at CAD \$1,525 per month	33,550
4 samplers – each at CAD \$825 per month	6,600
58 labourers – each at CAD \$260 per month	30,160
6 drivers – each at CAD \$875 per month	10,500

TABLE 41. ESTIMATED BUDGET FOR PHASE 1	[
Item	Cost (CAD)
1 administrator – at CAD \$2,750 per month	5,500
1 administrative assistant – at CAD \$590 per month	1,180
1 accountant - at CAD \$5,150 per month	10,300
2 cooks - each at CAD \$1,185 per month	4,740
6 kitchen assistants – each at CAD \$70 per month	840
1 mechanic – at CAD \$1,065 per month	2,130
1 electrician – at CAD \$1,055 per month	2,110
10 guards – each at CAD \$215 per month	4,300
17 rig guards – each at CAD \$215 per month	7,310
Sub-total	323,925
Camp and Equipment	
Drill and safety supplies (sample bags, standards, core boxes, etc) - at CAD \$70,000 per month	140,000
Camp rental - at CAD \$1,500 per month	3,000
Internet - at CAD \$940 per month	1,880
Food - at CAD \$20,000 per month	40,000
Water	1,000
16 vehicles	168,960
Fuel for generator and vehicles - at CAD \$18,000 per month	36,000
3 bulldozers - each at CAD \$29,500 per month	177,000
Bulldozer fuel - at CAD \$6,000 per month	12,000
Sub-total	579,840
Other	
Bamako office costs - at CAD \$13,350 per month	26,700
Consultancy fees	25,000
Sub-total	51,700
Total	5,095,140
10% contingency	509,514
Grand total	5,604,654

Roscan provided the following preliminary follow-up drilling plan for review by ACA Howe, however drill hole locations have not yet been planned. While the final drilling plan and budget for Phase 2 is largely dependent on the results of Phase 1, it is expected that Phase 2 will be completed, though possibly in a modified form.

TABLE 42. ESTIMATED BUDGET FOR PHASE 2				
Item	Cost (CAD)			
Exploration Activities				
AC drilling – 30,000 m (CAD \$26 / m)	780,000			
RC drilling – 10,000 m (CAD \$75 / m)	750,000			
Diamond drilling – 13,000 m (CAD \$275 / m)	3,575,000			
Drill hole sample assays – approximately 60,000 including QA/QC samples (CAD \$15 / sample)	900,000			
Sub-total	6,005,000			
Personnel				
13 geologists – each at CAD \$3,800 per month	148,200			
8 technicians - each at CAD \$3,250 per month	78,000			
4 consultant geologists	80,857			
11 geological assistants – each at CAD \$1,525 per month	50,325			
4 samplers – each at CAD \$825 per month	9,900			
58 labourers – each at CAD \$260 per month	45,240			
6 drivers – each at CAD \$875 per month	15,750			
1 administrator – at CAD \$2,750 per month	8,250			
1 administrative assistant – at CAD \$590 per month	1,770			
1 accountant - at CAD \$5,150 per month	15,450			
2 cooks - each at CAD \$1,185 per month	7,110			
6 kitchen assistants – each at CAD \$70 per month	1,260			
1 mechanic – at CAD \$1,065 per month	3,195			
1 electrician – at CAD \$1,055 per month	3,165			
10 guards – each at CAD \$215 per month	6,450			
17 rig guards – each at CAD \$215 per month	10,965			

Costs for Phase 2 are based on an estimated completion time of three months (Table 42).

Technical Report on the Kandiolé Gold Project in Southwest Mali, On Behalf of Roscan Gold Corp.

TABLE 42.ESTIMATED BUDGET FOR PHASE 2	
Item	Cost (CAD)
Sub-total	485,887
Camp and Equipment	
Drill and safety supplies (sample bags, standards, core boxes, etc) - at CAD \$70,000 per month	210,000
Camp rental - at CAD \$1,500 per month	4,500
Internet - at CAD \$940 per month	2,820
Food - at CAD \$20,000 per month	60,000
Water	1,000
16 vehicles	253,440
Fuel for generator and vehicles - at CAD \$18,000 per month	54,000
3 bulldozers - each at CAD \$29,500 per month	265,500
Bulldozer fuel - at CAD \$6,000 per month	18,000
Sub-total	869,260
Other	
Bamako office costs - at CAD \$13,350 per month	40,050
Consultancy fees	25,000
Sub-total	65,050
Total	7,425,197
10% contingency	742,520
Grand total	8,167,717

27. REFERENCES

Ashanti Exploration Limited, 2000. Rapport de synthese des traveax sur le permis de recherche de Moussala.

Assie K., 2008. Lode gold mineralization in the Paleoproterozoic (Birimian) volcanosedimentary sequence of Afema gold district, southeastern Côte d'Ivoire. Doctoral Thesis. Technical University of Clausthal.

AussieCan Geoscience Inc, 2020. Modeling and review of Pole-dipole IP / resistivity data over the Roscan Gold Project, Mali.

BRGM, 1978. Syndicat Or Mali (permis de Kéniéba et Kangaba). Note établissant les moyens et le programme des travaux de la campagne 1978-1979. Note BRGM RDM/AF No 1468 21/11/1978.

Code Minier du Mali, 2012. Presidence de la Republique du Mali, Secretariat General.

Geokincern Ltd, 2020. Structural interpretation : Mankouké property, Mali, West Africa.

Haines Surveys, 2014. Moussala Gravity Survey, Robex Resources Inc. March – April 2014.

IAMGOLD Corp press release, 30th January 2019. IAMGOLD reports 744,000 Indicated Ounces and Increases Resources by 57% at the Diakha – Siribaya Gold Project in Mali

International Geoscience, 2014. Regional lithostructural interpretation of the Moussala gravity survey data, Mali. Prepared by Warwick Crowe.

McLane, Margaret 1977. A Tabulation of Mining Concessions in French West Africa, 1895-1914. Proceedings of the Meeting of the French Colonial Historical Society, Vol. 2 (1977).

Oklo Resources Limited, Annual Report for the Year Ended 30 June 2016.

Oklo Resources Limited, Annual Report for the Year Ended 30 June 2018.

Robex Resources, 2006. Rapport d'activities d'Octubre 2005 a Septembre 2006.

Robex Resources, 2014. Rapport de synthese des activités, période 2005-2014.

Roscoe Postle Associates Inc. on behalf of IAMGOLD Corp, 2019. Technical Report on the Siribaya Project Mineral Resource Estimate, Cercle de Kenieba, Kayes Region, Republic of Mali.

SAGAX AFRIQUE S.A., 2020. Rapport sur un levé de polarisation provoquée / résistivité et de magnetometrie effectué sur le permis de Mankouké, Mali.

SGS Geological Services on behalf of Komet Resources, 2019. Dabia Sud Property, Kabaya Resource, NI 43-101 Technical Report, Mali.

Sollazzo, Roberto 2018. Gold at the crossroads: Assessment of the supply chains of gold produced in Burkina Faso, Mali and Niger. OECD & ALG (Liptako–Gourma Authority).

Stewart Geophysical Consultants Pty Ltd, 2014. Terrain corrections for the Moussala gravity survey, Mali.

Théberge, D, 2004. NI 43-101 qualifying report pertaining to the Moussala concession - Mali, West Africa.

28. DATE AND SIGNATURE PAGE

CERTIFICATE OF AUTHOR

I, David Patrick, do hereby certify that:

- 1. I am a Senior Associate Geologist of, and carried out this assignment for, A.C.A. Howe International Limited Registered Office: The Mill, Pury Hill Business Park, Alderton Road, Towcester, Northants, NN12 7LS, UK.
- 2. I graduated with a Bachelor of Science degree in geology from the University of Manchester in 1967. I obtained a PhD in geochemistry from the University of Manchester in 1970.
- 3. I am a Fellow of the Australasian Institute of Mining and Metallurgy.
- 4. I have worked as a geologist for a total of 49 years since my graduation from university, specialising in exploration, including more than 10 years managing and conducting gold exploration projects in West Africa.
- 5. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfil the requirements to be a "qualified person" for the purposes of NI 43-101.
- 6. I am responsible for the supervision of the preparation of Sections 1-9 and 25-26 and have peer reviewed the overall report titled "Technical Report on the Kandiolé Gold Project in Southwest Mali", with an effective date of 5th July 2020 and dated 6th November 2020, relating to the Property held in Mali by Roscan Gold Corporation. I am familiar with the general project area, but have not made a current inspection of the property that is the subject of the technical report.
- 7. I have not had prior involvement with the Property that is the subject of the technical report.
- 8. I am independent of the issuer applying all of the tests in section 1.5 of National Instrument 43-101.
- 9. I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.
- 10. As of the date of this certificate, to the best of my knowledge, information and belief, the technical report contains all scientific and technical information that is required to be disclosed and I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

Dated this 6th November 2020, with an effective date of 5th July 2020.

David Patrick

CERTIFICATE OF AUTHOR

I, Patrick O Sullivan, do hereby certify that:

- 1. I am a Senior Associate Geologist of, and carried out this assignment for, A.C.A. Howe International Limited Registered Office: The Mill, Pury Hill Business Park, Alderton Road, Towcester, Northants, NN12 7LS, UK.
- 2. I graduated with a Bachelor of Science (Hons) degree in geology from the University of Dublin in 1995. In addition, I obtained an M.Sc. in Mineral Resources from Cardiff University in 1996.
- 3. I am a Member of the Australian Institute of Geoscientists (AIG).
- 4. I have worked as a geologist for a total of 24 years since my graduation from university. My experience relevant to the technical report is involvement in the design and project management of gold exploration projects in West Africa, South America and Western Australia, including surface sampling, drilling, geophysical survey interpretations and surface mapping.
- 5. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfil the requirements to be a "qualified person" for the purposes of NI 43-101.
- 6. I visited the site and exploration camp from August 15th to 17th, and the Bamako administration office and sample storage on August 18th, 2019.
- 7. I am responsible for the preparation of Sections 1-10, 11.1-11.2, 12.1, 12.3, and 14-26 and Appendices 1-7 of the Technical Report titled "Technical Report on the Kandiolé Gold Project in Southwest Mali", with an effective date of 5th July 2020 and dated 6th November 2020, relating to the Property held in Mali by Roscan Gold Corporation.
- 8. I have read the Instrument and the sections of the Technical Report that I am responsible for have been prepared in compliance with the Instrument.
- 9. I have not had prior involvement with the Property that is the subject of the technical report.
- 10. I am independent of the issuer applying all of the tests in Section 1.5 of NI 43-101.
- 11. I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.
- 12. As of the date of this certificate, to the best of my knowledge, information and belief, the technical report contains all scientific and technical information that is required to be disclosed and I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

Dated this 6th November 2020, with an effective date of 5th July 2020.

Patrick O'Sullivan

CERTIFICATE OF AUTHOR

I, Tom Dowrick, do hereby certify that:

- 1. I am a Director and Senior Geologist of, and carried out this assignment for, A.C.A. Howe International Limited Registered Office: The Mill, Pury Hill Business Park, Alderton Road, Towcester, Northants, NN12 7LS, UK.
- 2. I graduated with a Bachelor of Science degree in geology and geography from the University of Leicester in 2007.
- 3. I am a Chartered Geologist of the Geological Society of London.
- 4. I have worked as a geologist for a total of 13 years since my graduation from university. My experience relevant to the technical report is involvement in the design, supervision and independent assessment of gold exploration projects in West Africa, Southern Africa, and South and Central America, including surface sampling, drilling, assessment of QA/QC data and data validation.
- 5. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfil the requirements to be a "qualified person" for the purposes of NI 43-101.
- 6. I am responsible for the preparation of Sections 11, 12.2, 12.3, 13 and 23-26 of the Technical Report titled "Technical Report on the Kandiolé Gold Project in Southwest Mali", with an effective date of 5th July 2020 and dated 6th November 2020 relating to the Property held in Mali by Roscan Gold Corporation. I have not made a current inspection of the property that is the subject of the technical report.
- 7. I was involved in a satellite image interpretation completed by ACA Howe on the project on behalf of Roscan in 2019.
- 8. I am independent of the issuer applying all of the tests in section 1.5 of National Instrument 43-101.
- 9. I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.
- 10. As of the date of this certificate, to the best of my knowledge, information and belief, the technical report contains all scientific and technical information that is required to be disclosed and I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

Dated this 6th November 2020, with an effective date of 5th July 2020.

T. Dow

Tom Dowrick

APPENDIX 1. COORDINATES OF PERMITS

	COORDINA	TES OF PERMITS	
Permit Name	Point	Longitude	Latitude
Kandiolé North	А	11°15'09"	12°32'28"
	В	11°10'09"	12°32'28"
	С	11°10'09"	12°30'04"
	D	11°15'09"	12°30'04"
Kandiolé West	А	11°18'14"	12°18'14"
	В	11°15'10"	12°32'28"
	С	11°15'10"	12°30'03"
	D	11°18'14"	12°30'03"
Niala	А	11°07'49"	12°33'41"
	В	11°01'58"	12°33'41"
	С	11°01'58"	12°32'51"
	D	11°03'59"	12°32'51"
	Е	11°03'59"	12°31'33"
	F	11°05'58"	12°31'33"
	G	11°05'58"	12°28'00"
	Н	11°10'01"	12°28'00"
	I	11°10'01"	12°30'43"
	J	11°07'49"	12°30'43"
Mankouké	A	11°11'13"	12°30'01"
Wankouke	B	11°10'00"	12°30'01"
	C C	11°10'00"	12°26'12"
	D	11°11'13"	12°26'12"
Moussala North	A	11°13'42"	12°39'02"
	B	11°12'19"	12°39'02"
	C C	11°12'19"	12°38'45"
	<u>D</u>	11°11'60"	12°38'45"
	E E	11°11'60"	12°37'52"
	E	11°10'09"	12°37'52"
	G	11°10'09"	12°34'58"
	<u> </u>	11°10'54"	12°34'58"
	I	11°10'54"	12°32'33"
	J	11°13'40"	12°32'33"
	K	11°13'40"	<u>12°33'12"</u>
	L	11°12'31"	12°33'12"
	M	11°12'31"	12°35'02"
	N N	11°10'57"	<u>12°35'02"</u>
	0	11°10'57"	<u>12°37'10"</u>
	<u> </u>	11°12'32"	<u>12°37'10"</u>
	 Q	11°12'32"	12°38'28"
		11°13'42"	12°38'28"
Segando South	A	11°18'15"	12°39'06"
	B	11°15'20"	<u>12°39'06"</u>
	C B	11°15'20"	12°32'31"
	 D	11°18'15"	<u>12 32 31</u> 12°32'31"
Dabia Sud		11°12'01"	<u>12°32'31</u> 12°39'05"
Daola Suu	А	11 12 01	12 39 03

В	11°09'13"	12°39'05"
С	11°09'13"	12°32'35"
D	11°10'50"	12°32'35"
E	11°10'50"	12°34'58"
F	11°10'05"	12°34'58"
G	11°10'05"	12°37'54"
Н	11°12'01"	12°37'54"

APPENDIX 2.AC DRILL HOLE COLLAR DETAILS

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACKaN-19-01	263520.78	1380494.40	216.45	48	-50	270	Kandiolé North
ACKaN-19-02	263569.74	1380494.03	218.21	50	-50	270	Kandiolé North
ACKaN-19-03	263536.12	1380545.73	218.55	50	-50	270	Kandiolé North
ACKaN-19-04	263582.51	1380544.57	220.24	50	-50	270	Kandiolé North
ACKaN-19-05	263535.90	1380447.12	215.09	50	-50	270	Kandiolé North Kandiolé
ACKaN-19-06	263585.93	1380446.33	216.44	50	-50	270	North Kandiolé
ACKaN-19-07	263487.02	1380494.48	216.00	50	-50	270	North Kandiolé
ACKaN-19-08	263560.56	1380600.42	220.07	50	-50	270	North Kandiolé
ACKaN-19-09	263628.77	1380543.16	221.87	50	-50	270	North Kandiolé
ACKaN-19-10	263614.83	1380493.64	219.65	50	-50	270	North Kandiolé
ACKaN-19-11	260976	1384495	206.98	50	-50	270	North Kandiolé
ACKaN-19-12	260945	1384494	208.07	50	-50	270	North Kandiolé
ACKaN-19-13	260915	1384494	207.41	50	-50	270	North Kandiolé
ACKaN-19-14	260884	1384494	208.21	50	-50	270	North Kandiolé
ACKaN-19-15 ACKaN-19-16	263801 263771	1385699 1385699	190.42 191.15	50 50	-50 -50	270 270	North Kandiolé North
ACKaN-19-10	263739	1385699	191.13	50	-50	270	Kandiolé North
ACKaN-19-18	263709	1385699	192.90	50	-50	270	Kandiolé North
ACKaN-19-19	263679	1385699	192.87	50	-50	270	Kandiolé North
ACKaN-19-20	261346	1386504	195.33	50	-50	270	Kandiolé North
ACKaN-19-21	261317	1386505	197.94	50	-50	270	Kandiolé North
ACKaN-19-22	261285	1386504	196.75	50	-50	270	Kandiolé North
ACKaN-19-23	261255	1386504	196.12	50	-50	270	Kandiolé North
ACKaN-19-24	261226	1386504	196.15	50	-50	270	Kandiolé North
ACKaN-19-25	261735	1387294	184.34	50	-50	270	Kandiolé

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
							North
							Kandiolé
ACKaN-19-26	261675	1387296	178.39	50	-50	270	North
ACK N 10 27	261644	1387296	176.07	50	50	270	Kandiolé
ACKaN-19-27	261644	138/290	176.07	50	-50	270	North Kandiolé
ACKaN-19-28	261614	1387294	174.25	50	-50	270	North
ACMan-18-01	263231.01	1380751.23	201.73	60	-50	270	Mankouké
ACMan-18-02	263249.47	1380750.56	204.16	45	-50	270	Mankouké
ACMan-18-03	263274.69	1380752.75	206.85	45	-50	270	Mankouké
ACMan-18-04	263300.53	1380748.87	209.14	45	-50	270	Mankouké
ACMan-18-05	263324.76	1380749.05	210.23	45	-50	270	Mankouké
ACMan-18-06	263349.76	1380749.05	211.02	45	-50	270	Mankouké
ACMan-18-07	263375.11	1380748.97	211.82	45	-50	270	Mankouké
ACMan-18-08	263398.35	1380749.32	213.37	45	-50	270	Mankouké
ACMan-18-09	263424.66	1380749.33	214.80	45	-50	270	Mankouké
ACMan-18-10	263449.89	1380749.47	215.95	45	-50	270	Mankouké
ACMan-18-11	263475.00	1380749.79	216.96	45	-50	270	Mankouké
ACMan-18-12	263499.98	1380749.94	217.69	45	-50	270	Mankouké
ACMan-18-13	263523.42	1380750.11	218.42	45	-50	270	Mankouké
ACMan-18-14	263049	1378500	140.76	21	-50	270	Mankouké
ACMan-18-15	263075	1378500	140.30	34	-50	270	Mankouké
ACMan-18-16	263100	1378500	140.63	34	-50	270	Mankouké
ACMan-18-17	263124	1378499	140.70	48	-50	270	Mankouké
ACMan-18-18	263150	1378500	142.48	45	-50	270	Mankouké
ACMan-18-19	263175	1378499	144.47	45	-50	270	Mankouké
ACMan-18-20	263199	1378501	146.91	45	-50	270	Mankouké
ACMan-18-21	263224	1378499	149.76	30	-50	270	Mankouké
ACMan-18-22	263250	1378499	150.75	45	-50	270	Mankouké
ACMan-18-23	263275	1378500	149.76	45	-50	270	Mankouké
ACMan-18-24	263301	1378501	148.70	45	-50	270	Mankouké
ACMan-18-25	263324	1378503	147.84	32	-50	270	Mankouké
ACMan-18-26	263350	1378499	146.85	60	-50	270	Mankouké
ACMan-18-27	263375	1378501	145.99	36	-50	270	Mankouké
ACMan-18-28	263399	1378500	145.00	18	-50	270	Mankouké
ACMan-18-29	263845	1378149	146.88	45	-50	270	Mankouké
ACMan-18-30	263870	1378150	147.68	45	-50	270	Mankouké
ACMan-18-31	263895	1378149	148.67	45	-50	270	Mankouké
ACMan-18-32	263912	1378149	150.12	45	-50	270	Mankouké
ACMan-18-33	263945	1378150	153.63	45	-50	270	Mankouké
ACMan-18-34	263969	1378150	154.82	45	-50	270	Mankouké
ACMan-18-35	263993	1378150	154.62	45	-50	270	Mankouké
ACMan-18-36	264019	1378176	155.15	45	-50	270	Mankouké
ACMan-18-37	264044	1378175	156.61	45	-50	270	Mankouké

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACMan-18-38	264070	1378176	158.39	45	-50	270	Mankouké
ACMan-18-39	264095	1378176	161.44	45	-50	270	Mankouké
ACMan-18-40	264119	1378151	164.15	45	-50	270	Mankouké
ACMan-18-41	264146	1378151	163.09	45	-50	270	Mankouké
ACMan-18-42	264169	1378151	161.83	45	-50	270	Mankouké
ACMan-18-43	264194	1378149	161.17	45	-50	270	Mankouké
ACMan-18-44	264220	1378149	160.97	45	-50	270	Mankouké
ACMan-18-45	264244	1378149	160.77	45	-50	270	Mankouké
ACMan-18-46	262499	1380500	173.31	45	-50	270	Mankouké
ACMan-18-47	262524	1380499	172.78	45	-50	270	Mankouké
ACMan-18-48	262548	1380500	173.84	45	-50	270	Mankouké
ACMan-18-49	262574	1380499	175.30	45	-50	270	Mankouké
ACMan-18-50	262600	1380499	174.24	45	-50	270	Mankouké
ACMan-18-51	262625	1380499	172.65	45	-50	270	Mankouké
ACMan-18-52	262649	1380499	170.40	45	-50	270	Mankouké
ACMan-18-53	262675	1380460	168.29	45	-50	270	Mankouké
ACMan-18-54	262699	1380459	164.32	45	-50	270	Mankouké
ACMan-18-55	262724	1380459	160.35	45	-50	270	Mankouké
ACMan-18-56	262750	1380451	156.38	45	-50	270	Mankouké
ACMan-18-57	262775	1380498	154.26	45	-50	270	Mankouké
ACMan-18-58	262800	1380499	151.49	45	-50	270	Mankouké
ACMan-18-59	262825	1380499	149.90	45	-50	270	Mankouké
ACMan-18-60	262850	1380499	148.31	45	-50	270	Mankouké
ACMan-18-61	262874	1380509	145.66	45	-50	270	Mankouké
ACMan-18-62	262899	1380499	142.49	45	-50	270	Mankouké
ACMan-18-63	262925	1380499	142.75	45	-50	270	Mankouké
ACMan-18-64	262950	1380498	143.55	45	-50	270	Mankouké
ACMan-18-65	262976	1380499	145.27	45	-50	270	Mankouké
ACMan-18-66	263001	1380499	146.06	45	-50	270	Mankouké
ACMan-18-67	263025	1380499	146.99	45	-50	270	Mankouké
ACMan-18-68	263050	1380499	147.12	45	-50	270	Mankouké
ACMan-18-69	263075	1380499	148.05	45	-50	270	Mankouké
ACMan-18-70	263101	1380498	152.01	45	-50	270	Mankouké
ACMan-18-71	263153	1380498	159.82	60	-50	270	Mankouké
ACMan-18-72	263174	1380499	162.86	45	-50	270	Mankouké
ACMan-18-73	263198	1380499	165.24	45	-50	270	Mankouké
ACMan-18-74	263224	1380499	166.83	45	-50	270	Mankouké
ACMan-18-75	263249	1380498	166.96	45	-50	270	Mankouké
ACMan-18-76	263272.01	1380459.28	195.51	60	-50	270	Mankouké
ACMan-18-77	263298.44	1380500.04	193.90	60	-50	270	Mankouké
ACMan-18-78	263322.84	1380499.93	194.33	45	-50	270	Mankouké
ACMan-18-79	263346.18	1380499.76	196.06	45	-50	270	Mankouké
ACMan-18-80	263423.85	1380513.81	216.78	60	-50	270	Mankouké

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACMan-18-81	263452.22	1380500.10	217.16	60	-50	270	Mankouké
ACMan-18-82	263474.83	1380499.72	216.47	45	-50	270	Mankouké
ACMan-18-83	263500.22	1380499.28	216.31	45	-50	270	Mankouké
ACMan-18-84	263524.69	1380499.35	216.69	45	-50	270	Mankouké
ACMan-18-85	263550.19	1380498.96	217.61	45	-50	270	Mankouké
ACMan-18-86	263575.09	1380499.52	218.59	45	-50	270	Mankouké
ACMan-18-87	263599.98	1380499.77	219.32	45	-50	270	Mankouké
ACMan-18-88	263625.06	1380500.01	220.16	45	-50	270	Mankouké
ACMan-18-89	263650.68	1380500.12	220.55	45	-50	270	Mankouké
ACMan-18-90	263676.05	1380500.58	220.76	45	-50	270	Mankouké
ACMan-18-91	263699.93	1380500.89	220.67	45	-50	270	Mankouké
ACMan-18-92	263725.52	1380500.16	220.44	45	-50	270	Mankouké
ACMan-18-93	263751.00	1380500.48	220.31	45	-50	270	Mankouké
ACMan-18-94	263776.08	1380500.71	220.04	45	-50	270	Mankouké
ACMan-18-95	263800.76	1380500.16	219.81	45	-50	270	Mankouké
ACMan-18-96	263826.20	1380500.04	219.20	45	-50	270	Mankouké
ACMan-18-97	263848	1380499	185.96	45	-50	270	Mankouké
ACMan-18-98	263875	1380499	185.36	45	-50	270	Mankouké
ACMan-19-99	263901	1380500	183.37	45	-50	270	Mankouké
ACMan-19-100	263924	1380499	182.31	45	-50	270	Mankouké
ACMan-19-101	263949	1380499	181.12	45	-50	270	Mankouké
ACMan-19-102	263975	1380499	180.59	45	-50	270	Mankouké
ACMan-19-103	263999	1380499	180.06	45	-50	270	Mankouké
ACMan-19-01	263367.91	1380549.87	197.23	60	-50	270	Mankouké
ACMan-19-02	263429.10	1380549.13	218.09	60	-50	270	Mankouké
ACMan-19-03	263448.55	1380549.27	218.48	60	-50	270	Mankouké
ACMan-19-04	263473.44	1380549.55	217.79	60	-50	270	Mankouké
ACMan-19-05	263496.18	1380549.69	217.61	60	-50	270	Mankouké
ACMan-19-06	263523.79	1380549.99	218.24	60	-50	270	Mankouké
ACMan-19-07	263548.32	1380550.35	219.04	60	-50	270	Mankouké
ACMan-19-08	263571.67	1380550.47	219.94	60	-50	270	Mankouké
ACMan-19-09	263597.91	1380550.82	221.06	60	-50	270	Mankouké
ACMan-19-10	263621.64	1380550.97	221.98	60	-50	270	Mankouké
ACMan-19-11	263645.95	1380551.19	222.63	60	-50	270	Mankouké
ACMan-19-12	263672.21	1380551.42	222.50	60	-50	270	Mankouké
ACMan-19-13	263320.65	1380450.88	196.45	60	-50	270	Mankouké
ACMan-19-14	263347.58	1380450.40	199.01	60	-50	270	Mankouké
ACMan-19-15	263371.28	1380450.46	200.77	60	-50	270	Mankouké
ACMan-19-16	263426.01	1380448.06	213.95	60	-50	270	Mankouké
ACMan-19-17	263449.21	1380448.18	214.98	60	-50	270	Mankouké
ACMan-19-18	263471.82	1380448.45	214.90	60	-50	270	Mankouké
ACMan-19-19	263497.46	1380448.90	214.53	60	-50	270	Mankouké
ACMan-19-20	263521.77	1380448.98	214.68	60	-50	270	Mankouké

		AC DRI	LL HOLE LO	OCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACMan-19-21	263547.08	1380449.13	215.68	60	-50	270	Mankouké
ACMan-19-22	263572.02	1380449.43	216.30	60	-50	270	Mankouké
ACMan-19-23	263596.86	1380449.73	217.15	60	-50	270	Mankouké
ACMan-19-24	263622.14	1380450.05	218.22	60	-50	270	Mankouké
ACMan-19-25	263646.20	1380450.17	218.59	60	-50	270	Mankouké
ACMan-19-26	263671.51	1380450.61	218.79	60	-50	270	Mankouké
ACMan-19-27	263551.57	1380749.72	218.85	60	-50	270	Mankouké
ACMan-19-28	263573.33	1380750.17	218.72	60	-50	270	Mankouké
ACMan-19-29	263596.88	1380750.37	218.49	60	-50	270	Mankouké
ACMan-19-30	263621.56	1380750.27	218.43	60	-50	270	Mankouké
ACMan-19-31	263646.60	1380750.23	218.18	60	-50	270	Mankouké
ACMan-19-32	263671.74	1380750.35	217.73	60	-50	270	Mankouké
ACMan-19-33	263696.10	1380750.33	217.56	60	-50	270	Mankouké
ACMan-19-34	263721.57	1380750.47	217.32	60	-50	270	Mankouké
ACMan-19-35	263745.97	1380750.46	216.40	60	-50	270	Mankouké
ACMan-19-36	263410	1380100	172.30	60	-50	270	Mankouké
ACMan-19-37	263439	1380099	173.72	60	-50	270	Mankouké
ACMan-19-38	263469	1380099	174.68	47	-50	270	Mankouké
ACMan-19-39	263491	1380099	175.15	50	-50	270	Mankouké
ACMan-19-40	263519	1380099	174.68	56	-50	270	Mankouké
ACMan-19-41	263649	1379900	160.63	57	-50	270	Mankouké
ACMan-19-42	263619	1379900	157.28	47	-50	270	Mankouké
ACMan-19-43	263589	1379898	156.46	25	-50	270	Mankouké
ACMan-19-44	263575	1379900	156.08	33	-50	270	Mankouké
ACMan-19-45	263555	1379899	155.13	35	-50	270	Mankouké
ACMan-19-46	263528	1379900	153.81	58	-50	270	Mankouké
ACMan-19-47	263498	1379900	153.36	33	-50	270	Mankouké
ACMan-19-48	263482	1379900	152.86	30	-50	270	Mankouké
ACMan-19-49	263466	1379899	152.98	60	-50	270	Mankouké
ACMan-19-50	263437	1379899	153.30	32	-50	270	Mankouké
ACMan-19-51	263421	1379899	153.62	30	-50	270	Mankouké
ACMan-19-52	263406	1379899	153.62	30	-50	270	Mankouké
ACMan-19-53	263391	1379901	153.74	32	-50	270	Mankouké
ACMan-19-54	263376	1379900	154.12	30	-50	270	Mankouké
ACMan-19-55	263361	1379899	154.69	42	-50	270	Mankouké
ACMan-19-56	263341	1379899	155.01	42	-50	270	Mankouké
ACMan-19-57	263321	1379898	153.62	42	-50	270	Mankouké
ACMan-19-58	263302	1379900	152.48	42	-50	270	Mankouké
ACMan-19-59	263281	1379899	151.66	48	-50	270	Mankouké
ACMan-19-60	263254	1379901	150.96	52	-50	270	Mankouké
ACMan-19-61	263229	1379901	150.39	53	-50	270	Mankouké
ACMan-19-62	263203	1379900	149.38	55	-50	270	Mankouké
ACMan-19-63	263176	1379899	145.65	48	-50	270	Mankouké

		AC DRI	LL HOLE LO	OCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACMan-19-64	264300	1382160	191.61	56	-50	270	Mankouké
ACMan-19-65	264271	1382160	190.75	54	-50	270	Mankouké
ACMan-19-66	264240	1382160	189.83	52	-50	270	Mankouké
ACMan-19-67	264214	1382161	189.23	54	-50	270	Mankouké
ACMan-19-68	264189	1382161	189.50	56	-50	270	Mankouké
ACMan-19-69	264158	1382162	190.02	48	-50	270	Mankouké
ACMan-19-70	264134	1382161	189.69	54	-50	270	Mankouké
ACMan-19-71	264106	1382160	187.97	52	-50	270	Mankouké
ACMan-19-72	264080	1382160	184.27	51	-50	270	Mankouké
ACMan-19-73	264055	1382160	181.16	52	-50	270	Mankouké
ACMan-19-74	264043	1382162	180.04	48	-50	270	Mankouké
ACMan-19-75	263949	1382349	188.34	55	-50	270	Mankouké
ACMan-19-76	263925	1382350	188.53	54	-50	270	Mankouké
ACMan-19-77	263898	1382350	185.62	54	-50	270	Mankouké
ACMan-19-78	263871	1382349	183.44	54	-50	270	Mankouké
ACMan-19-79	263842	1382349	181.92	48	-50	270	Mankouké
ACMan-19-80	263816	1382349	180.60	42	-50	270	Mankouké
ACMan-19-81	263797	1382350	179.60	48	-50	270	Mankouké
ACMan-19-82	263773	1382351	176.96	42	-50	270	Mankouké
ACMan-19-83	263753	1382349	174.31	48	-50	270	Mankouké
ACMan-19-84	263509.60	1380601.11	218.64	50	-50	270	Mankouké
ACMan-19-85	263483.87	1380601.41	218.37	50	-50	270	Mankouké
ACMan-19-86	263462.31	1380601.26	218.61	50	-50	270	Mankouké
ACMan-19-87	263561.21	1380650.20	219.89	50	-50	270	Mankouké
ACMan-19-88	263534.11	1380650.43	219.27	50	-50	270	Mankouké
ACMan-19-89	263512.05	1380650.53	218.74	50	-50	270	Mankouké
ACMan-19-90	263484.61	1380650.68	218.35	50	-50	270	Mankouké
ACMan-19-91	263458.22	1380651.10	218.16	50	-50	270	Mankouké
ACMan-19-92	263509.81	1380701.14	218.53	50	-50	270	Mankouké
ACMan-19-93	263482.76	1380701.14	217.63	50	-50	270	Mankouké
ACMan-19-94	263459.01	1380701.07	216.91	50	-50	270	Mankouké
ACMan-19-95	263514.17	1380796.89	217.21	50	-50	270	Mankouké
ACMan-19-96	263484.03	1380798.22	216.81	50	-50	270	Mankouké
ACMan-19-97	263462.33	1380799.00	216.17	50	-50	270	Mankouké
ACMan-19-98	263582.93	1380850.52	215.12	50	-50	270	Mankouké
ACMan-19-104	263558.34	1380849.62	214.29	50	-50	270	Mankouké
ACMan-19-105	263506.59	1380850.88	203.85	50	-50	270	Mankouké
ACMan-19-106	263481.71	1380852.10	204.91	50	-50	270	Mankouké
ACMan-19-107	263523.38	1381001.80	206.98	50	-50	270	Mankouké
ACMan-19-108	263499.82	1381002.86	204.35	50	-50	270	Mankouké
ACMan-19-109	263447.68	1381000.96	195.37	36	-50	270	Mankouké
ACMan-19-110	263428.84	1381000.72	193.39	29	-50	270	Mankouké
ACMan-19-111	263401.74	1380999.87	189.71	50	-50	270	Mankouké

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACMan-19-112	263369.83	1380999.03	192.42	29	-50	270	Mankouké
ACMan-19-113	263356.08	1380999.18	190.84	33	-50	270	Mankouké
ACMan-19-114	263333.23	1380999.59	189.46	50	-50	270	Mankouké
ACMan-19-115	263306.55	1380999.79	186.91	50	-50	270	Mankouké
ACMan-19-116	263280.32	1381000.13	184.69	50	-50	270	Mankouké
ACMan-19-117	263511.86	1380350.59	211.04	50	-50	270	Mankouké
ACMan-19-118	263486.76	1380351.21	211.35	50	-50	270	Mankouké
ACMan-19-119	263461.61	1380351.81	210.95	50	-50	270	Mankouké
ACMan-19-120	263848	1380398	187.26	50	-50	270	Mankouké
ACMan-19-121	263823.05	1380398.39	217.74	50	-50	270	Mankouké
ACMan-19-122	263798.87	1380398.17	217.98	50	-50	270	Mankouké
ACMan-19-123	263513.20	1380399.70	212.46	50	-50	270	Mankouké
ACMan-19-124	263487.39	1380399.44	213.09	50	-50	270	Mankouké
ACMan-19-125	263463.10	1380399.01	212.83	50	-50	270	Mankouké
ACMan-19-126	262866	1380399	147.07	36	-50	270	Mankouké
ACMan-19-127	262847	1380402	148.13	36	-50	270	Mankouké
ACMan-19-128	262829	1380402	149.39	42	-50	270	Mankouké
ACMan-19-129	262812	1380402	151.04	36	-50	270	Mankouké
ACMan-19-130	262792	1380401	153.82	36	-50	270	Mankouké
ACMan-19-131	264330	1382549	190.81	30	-50	270	Mankouké
ACMan-19-132	264271	1382548	188.76	60	-50	270	Mankouké
ACMan-19-133	264237	1382548	188.17	52	-50	270	Mankouké
ACMan-19-134	264209	1382550	188.43	44	-50	270	Mankouké
ACMan-19-135	263971	1382550	187.37	60	-50	270	Mankouké
ACMan-19-136	263943	1382549	186.51	60	-50	270	Mankouké
ACMan-19-137	263914	1382549	186.71	60	-50	270	Mankouké
ACMan-19-138	263881	1382549	187.64	60	-50	270	Mankouké
ACMan-19-139	263850	1382551	186.71	60	-50	270	Mankouké
ACMan-19-140	264507	1382159	198.89	60	-50	270	Mankouké
ACMan-19-141	264478	1382159	197.23	55	-50	270	Mankouké
ACMan-19-142	264450	1382159	194.72	44	-50	270	Mankouké
ACMan-19-143	264426	1382158	193.13	41	-50	270	Mankouké
ACMan-19-144	264408	1382159	192.01	50	-50	270	Mankouké
ACMan-19-145	264379	1382159	189.96	49	-50	270	Mankouké
ACMan-19-146	264356	1382159	187.84	45	-50	270	Mankouké
ACMan-19-147	264332	1382160	188.50	53	-50	270	Mankouké
ACMan-19-148	263691	1382349	175.37	28	-50	270	Mankouké
ACMan-19-149	263676	1382350	175.04	30	-50	270	Mankouké
ACMan-19-150	263654	1382349	174.71	42	-50	270	Mankouké
ACMan-19-151	263632	1382349	171.73	50	-50	270	Mankouké
ACMan-19-152	263606	1382349	168.16	50	-50	270	Mankouké
ACMan-19-153	263579	1382349	168.36	50	-50	270	Mankouké
ACMan-19-154	263559	1382349	168.62	60	-50	270	Mankouké

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACMan-19-155	263526	1382349	169.09	50	-50	270	Mankouké
ACMan-19-156	263501	1382347	169.02	54	-50	270	Mankouké
ACMan-19-157	264179	1382589	189.23	50	-50	270	Mankouké
ACMan-19-158	264150	1382574	190.28	50	-50	270	Mankouké
ACMan-19-159	264122	1382549	191.80	50	-50	270	Mankouké
ACMan-19-160	264097	1382551	190.61	60	-50	270	Mankouké
ACMan-19-161	264065	1382548	187.90	60	-50	270	Mankouké
ACMan-19-162	263992	1382557	187.31	60	-50	270	Mankouké
ACMan-19-163	262820	1375850	172.38	50	-50	270	Mankouké
ACMan-19-164	262796	1375849	171.78	50	-50	270	Mankouké
ACMan-19-165	262771	1375849	173.04	50	-50	270	Mankouké
ACMan-19-166	262744	1375849	175.02	50	-50	270	Mankouké
ACMan-19-167	262721	1375848	175.49	50	-50	270	Mankouké
ACMan-19-168	262696	1375850	175.82	50	-50	270	Mankouké
ACMan-19-169	262670	1375849	176.01	50	-50	270	Mankouké
ACMan-19-170	262644	1375848	176.94	50	-50	270	Mankouké
ACMan-19-171	262619	1375849	178.79	50	-50	270	Mankouké
ACMan-19-172	262594	1375848	177.47	50	-50	270	Mankouké
ACMan-19-173	262570	1375849	174.63	50	-50	270	Mankouké
ACMan-19-174	262542	1375849	175.02	50	-50	270	Mankouké
ACMan-19-175	262799	1376622	173.09	42	-50	270	Mankouké
ACMan-19-176	262778	1376621	173.36	42	-50	270	Mankouké
ACMan-19-177	262756	1376622	173.56	40	-50	270	Mankouké
ACMan-19-178	262736	1376622	173.29	38	-50	270	Mankouké
ACMan-19-179	262717	1376622	172.76	33	-50	270	Mankouké
ACMan-19-180	262699	1376621	172.10	36	-50	270	Mankouké
ACMan-19-181	264161	1377199	148.64	50	-50	270	Mankouké
ACMan-19-182	264135	1377200	149.57	44	-50	270	Mankouké
ACMan-19-183	264113	1377199	150.56	50	-50	270	Mankouké
ACMan-19-184	264088	1377200	151.82	50	-50	270	Mankouké
ACMan-19-185	264063	1377200	152.74	50	-50	270	Mankouké
ACMan-19-186	264038	1377199	153.60	50	-50	270	Mankouké
ACMan-19-187	264014	1377200	152.74	50	-50	270	Mankouké
ACMan-19-188	263989	1377200	151.88	38	-50	270	Mankouké
ACMan-19-189	263970	1377200	151.88	36	-50	270	Mankouké
ACMan-19-190	263952	1377201	151.95	35	-50	270	Mankouké
ACMan-19-191	263813	1377200	156.31	38	-50	270	Mankouké
ACMan-19-192	263793	1377200	156.05	32	-50	270	Mankouké
ACMan-19-193	263776	1377201	155.79	30	-50	270	Mankouké
ACMan-19-194	263761	1377200	155.39	24	-50	270	Mankouké
ACMan-19-195	263750	1377198	154.99	32	-50	270	Mankouké
ACMan-19-196	263734	1377201	154.40	29	-50	270	Mankouké
ACMan-19-197	263722	1377199	154.07	42	-50	270	Mankouké

		AC DRI	LL HOLE LO	OCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACMan-19-198	263701	1377200	153.87	24	-50	270	Mankouké
ACMan-19-199	263689	1377200	153.74	20	-50	270	Mankouké
ACMan-19-200	263475	1377417	148.59	24	-50	270	Mankouké
ACMan-19-201	263425	1377420	154.01	32	-50	270	Mankouké
ACMan-19-202	263409	1377420	155.33	30	-50	270	Mankouké
ACMan-19-203	263395	1377420	155.73	28	-50	270	Mankouké
ACMan-19-204	263381	1377419	155.86	28	-50	270	Mankouké
ACMan-19-205	263367	1377420	155.99	30	-50	270	Mankouké
ACMan-19-206	263352	1377420	156.32	38	-50	270	Mankouké
ACMan-19-207	263333	1377420	156.32	38	-50	270	Mankouké
ACMan-19-208	263314	1377420	156.52	35	-50	270	Mankouké
ACMan-19-209	263296	1377419	157.18	36	-50	270	Mankouké
ACMan-19-210	263278	1377420	157.65	46	-50	270	Mankouké
ACMan-19-211	263255	1377420	158.04	40	-50	270	Mankouké
ACMan-19-212	263235	1377421	158.31	36	-50	270	Mankouké
ACMan-19-213	263217	1377419	158.04	36	-50	270	Mankouké
ACMan-19-214	263199	1377420	157.25	32	-50	270	Mankouké
ACMan-19-215	263183	1377420	156.59	33	-50	270	Mankouké
ACMan-19-216	263166	1377420	155.66	22	-50	270	Mankouké
ACMan-19-217	263155	1377420	155.13	28	-50	270	Mankouké
ACMan-19-218	263141	1377420	154.41	26	-50	270	Mankouké
ACMan-19-219	263130	1377420	154.94	20	-50	270	Mankouké
ACMan-19-220	263120	1377419	155.86	29	-50	270	Mankouké
ACMan-19-221	262569	1378000	145.97	24	-50	270	Mankouké
ACMan-19-222	262553	1378000	145.44	26	-50	270	Mankouké
ACMan-19-223	262540	1378002	146.40	22	-50	270	Mankouké
ACMan-19-224	262529	1378000	147.06	24	-50	270	Mankouké
ACMan-19-225	262517	1378000	147.86	30	-50	270	Mankouké
ACMan-19-226	262502	1378000	148.22	28	-50	270	Mankouké
ACMan-19-227	262488	1378000	148.48	46	-50	270	Mankouké
ACMan-19-228	262465	1378000	148.62	26	-50	270	Mankouké
ACMan-19-229	262401	1378200	143.22	50	-50	270	Mankouké
ACMan-19-230	262375	1378200	143.16	50	-50	270	Mankouké
ACMan-19-231	262350	1378200	143.46	50	-50	270	Mankouké
ACMan-19-232	262325	1378200	144.35	50	-50	270	Mankouké
ACMan-19-233	262300	1378201	145.90	50	-50	270	Mankouké
ACMan-19-234	263220	1378775	144.01	50	-50	270	Mankouké
ACMan-19-235	263195	1378775	143.28	50	-50	270	Mankouké
ACMan-19-236	263170	1378775	142.69	50	-50	270	Mankouké
ACMan-19-237	263144	1378775	142.29	50	-50	270	Mankouké
ACMan-19-238	263120	1378775	142.23	34	-50	270	Mankouké
ACMan-19-239	263103	1378775	142.16	50	-50	270	Mankouké
ACMan-19-240a	263078	1378776	141.86	50	-50	270	Mankouké

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACMan-19-240b	263078	1378776	141.86	50	-50	270	Mankouké
ACMan-19-241	263053	1378775	141.37	32	-50	270	Mankouké
ACMan-19-242	263037	1378775	141.00	50	-50	270	Mankouké
ACMan-19-243	263650	1380074	173.66	30	-50	270	Mankouké
ACMan-19-244	263635	1380075	174.05	32	-50	270	Mankouké
ACMan-19-245	263619	1380074	174.48	30	-50	270	Mankouké
ACMan-19-246	263602	1380075	174.72	24	-50	270	Mankouké
ACMan-19-247	263590	1380075	174.88	24	-50	270	Mankouké
ACMan-19-248	263577	1380074	174.98	38	-50	270	Mankouké
ACMan-19-249	263558	1380075	174.75	41	-50	270	Mankouké
ACMan-19-250	263537	1380075	174.32	60	-50	270	Mankouké
ACMan-19-251	263380	1380099	170.85	60	-50	270	Mankouké
ACMan-19-252	263349	1380099	168.90	60	-50	270	Mankouké
ACMan-19-253	263319	1380099	165.79	60	-50	270	Mankouké
ACMan-19-254	263289	1380099	162.41	60	-50	270	Mankouké
ACMan-19-255	263259	1380099	159.83	60	-50	270	Mankouké
ACMan-19-256	263699.61	1380901.22	201.03	48	-50	270	Mankouké
ACMan-19-257	263675.12	1380900.85	201.87	60	-50	270	Mankouké
ACMan-19-258	263646.41	1380900.96	204.98	60	-50	270	Mankouké
ACMan-19-259	263619.84	1380901.03	208.96	60	-50	270	Mankouké
ACMan-19-260	263589.15	1380901.05	212.72	60	-50	270	Mankouké
ACMan-19-261	263556.44	1380901.34	213.12	60	-50	270	Mankouké
ACMan-19-262	263819.72	1380901.65	198.98	60	-50	270	Mankouké
ACMan-19-263	263788.52	1380901.15	199.52	60	-50	270	Mankouké
ACMan-19-264	263758.48	1380900.79	200.15	60	-50	270	Mankouké
ACMan-19-265	263729.51	1380900.73	200.97	60	-50	270	Mankouké
ACMan-19-266	263497.31	1380899.34	199.78	60	-50	270	Mankouké
ACMan-19-267	263467.49	1380899.22	199.40	60	-50	270	Mankouké
ACMan-19-268	263436.55	1380899.80	200.35	60	-50	270	Mankouké
ACMan-19-269	263406.09	1380899.28	202.25	60	-50	270	Mankouké
ACMan-19-270	263376.41	1380899.57	207.25	60	-50	270	Mankouké
ACMan-19-271	263347.54	1380899.40	203.71	56	-50	270	Mankouké
ACMan-19-272	263315.97	1380899.04	198.49	28	-50	270	Mankouké
ACMan-19-273	263307.14	1380899.20	196.18	60	-50	270	Mankouké
ACMan-19-274	263276.89	1380899.21	189.86	60	-50	270	Mankouké
ACMan-19-275	263248.36	1380899.33	184.63	60	-50	270	Mankouké
ACMan-19-276	263217.61	1380899.66	181.61	60	-50	270	Mankouké
ACMou-18-01	260849	1398326	177.3	60	-50	270	Moussala N
ACMou-18-02	260874	1398300	177.0	45	-50	270	Moussala N
ACMou-18-03	260901	1398300	174.5	45	-50	270	Moussala N
ACMou-18-04	260925	1398299	172.3	45	-50	270	Moussala N
ACMou-18-05	260949	1398300	170.4	45	-50	270	Moussala N
ACMou-18-06	260974	1398299	168.7	45	-50	270	Moussala N

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACMou-18-07	260997	1398300	168.5	45	-50	270	Moussala N
ACMou-18-08	261016	1398284	168.4	45	-50	270	Moussala N
ACMou-18-09	260349	1396899	182.5	45	-50	270	Moussala N
ACMou-18-10	260374	1396900	182.3	45	-50	270	Moussala N
ACMou-18-11	260399	1396899	184.9	45	-50	270	Moussala N
ACMou-18-12	260425	1396900	186.9	45	-50	270	Moussala N
ACMou-18-13	260451	1396900	186.7	45	-50	270	Moussala N
ACMou-18-14	260474	1396901	186.6	45	-50	270	Moussala N
ACMou-18-15	260500	1396900	186.6	45	-50	270	Moussala N
ACMou-18-16	260524	1396899	186.5	45	-50	270	Moussala N
ACMou-18-17	260549	1396899	187.6	45	-50	270	Moussala N
ACMou-18-18	261575	1397063	209.5	45	-50	210	Moussala N
ACMou-18-19	261588	1397085	208.8	45	-50	210	Moussala N
ACMou-18-20	261599	1397106	208.0	45	-50	210	Moussala N
ACMou-18-21	261613	1397128	207.3	45	-50	210	Moussala N
ACMou-18-22	261626	1397150	206.7	45	-50	210	Moussala N
ACMou-18-23	261638	1397172	205.9	45	-50	210	Moussala N
ACMou-18-24	261649	1397194	204.6	45	-50	210	Moussala N
ACMou-18-25	261663	1397215	204.3	45	-50	210	Moussala N
ACMou-18-26	261675	1397237	204.6	45	-50	210	Moussala N
ACMou-18-27	261687	1397259	204.5	45	-50	210	Moussala N
ACMou-18-28	261700	1397281	203.1	45	-50	210	Moussala N
ACMou-19-01	260924	1398349	167.41	50	-50	270	Moussala N
ACMou-19-02	260897	1398349	171.51	50	-50	270	Moussala N
ACMou-19-03	260864	1398350	175.84	50	-50	270	Moussala N
ACMou-19-04	260834	1398351	174.05	50	-50	270	Moussala N
ACMou-19-05	260953	1398079	177.20	50	-50	270	Moussala N
ACMou-19-06	260925	1398079	178.29	50	-50	270	Moussala N
ACMou-19-07	260894	1398079	181.04	50	-50	270	Moussala N
ACMou-19-08	260864	1398079	184.38	50	-50	270	Moussala N
ACMou-19-09	260835	1398080	187.95	50	-50	270	Moussala N
ACMou-19-10	260730	1397294	187.09	50	-50	270	Moussala N
ACMou-19-11	260700	1397293	186.43	50	-50	270	Moussala N
ACMou-19-12	260669	1397292	186.59	50	-50	270	Moussala N
ACMou-19-13	260640	1397292	186.76	50	-50	270	Moussala N
ACMou-19-14	260611	1397292	186.59	50	-50	270	Moussala N
ACMou-19-15	262225	1396189	206	50	-50	270	Moussala N
ACMou-19-16	262194	1396189	203	50	-50	270	Moussala N
ACMou-19-17	262166	1396189	195	50	-50	270	Moussala N
ACMou-19-18	262136	1396189	191	50	-50	270	Moussala N
ACMou-19-19	262104	1396189	195	50	-50	270	Moussala N
ACMou-19-20	263181	1396891	200	50	-50	270	Moussala N
ACMou-19-21	263150	1396891	200	50	-50	270	Moussala N

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACMou-19-22	263120	1396891	200	50	-50	270	Moussala N
ACMou-19-23	263091	1396891	194	50	-50	270	Moussala N
ACMou-19-24	263059	1396891	195	50	-50	270	Moussala N
ACMou-19-25	263391	1396500	189	50	-50	270	Moussala N
ACMou-19-26	263361	1396500	189	50	-50	270	Moussala N
ACMou-19-27	263331	1396500	198	50	-50	270	Moussala N
ACMou-19-28	263301	1396501	198	50	-50	270	Moussala N
ACMou-19-29	263271	1396500	198	50	-50	270	Moussala N
ACMou-19-30	263546	1396099	188	50	-50	270	Moussala N
ACMou-19-31	263514	1396100	195	50	-50	270	Moussala N
ACMou-19-32	263484	1396100	197	50	-50	270	Moussala N
ACMou-19-33	263454	1396099	196	50	-50	270	Moussala N
ACMou-19-34	263424	1396099	199	50	-50	270	Moussala N
ACMou-19-35	263635	1395499	192	50	-50	270	Moussala N
ACMou-19-36	263603	1395499	201	50	-50	270	Moussala N
ACMou-19-37	263574	1395499	189	50	-50	270	Moussala N
ACMou-19-38	263544	1395499	192	50	-50	270	Moussala N
ACMou-19-39	263516	1395499	194	50	-50	270	Moussala N
ACMou-19-40a	262225	1391689	194	50	-50	270	Moussala N
ACMou-19-40b	262225	1391689	194	50	-50	270	Moussala N
ACMou-19-41	262196	1391689	192	50	-50	270	Moussala N
ACMou-19-42	262165	1391689	201	50	-50	270	Moussala N
ACMou-19-43	262134	1391690	195	50	-50	270	Moussala N
ACMou-19-44	262106	1391690	199	50	-50	270	Moussala N
ACMou-19-45	263355	1392721	192	50	-50	270	Moussala N
ACMou-19-46	263325	1392720	186	50	-50	270	Moussala N
ACMou-19-47	263294	1392720	189	50	-50	270	Moussala N
ACMou-19-48	263265	1392720	191	50	-50	270	Moussala N
ACMou-19-49	263235	1392720	188	50	-50	270	Moussala N
ACMou-19-50	260870	1390299	187	50	-50	270	Moussala N
ACMou-19-51	260840	1390300	188	50	-50	270	Moussala N
ACMou-19-52	260779	1390300	182	50	-50	270	Moussala N
ACMou-19-53	260750	1390300	181	50	-50	270	Moussala N
ACMou-19-54	260719	1390300	170	50	-50	270	Moussala N
ACMou-19-55	261994	1387700	176	50	-50	270	Moussala N
ACMou-19-56	261940	1387700	162	50	-50	270	Moussala N
ACMou-19-57	261910	1387699	162	50	-50	270	Moussala N
ACMou-19-58	261880	1387701	163	50	-50	270	Moussala N
ACMou-19-59	261160	1387900	149	50	-50	270	Moussala N
ACMou-19-60	261130	1387900	149	50	-50	270	Moussala N
ACMou-19-61	261105	1387900	148	50	-50	270	Moussala N
ACMou-19-62	261081	1387900	153	50	-50	270	Moussala N
ACMou-19-63	261055	1387900	149	50	-50	270	Moussala N

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACMou-19-64	260410	1387500	157	50	-50	270	Moussala N
ACMou-19-65	260381	1387501	153	50	-50	270	Moussala N
ACMou-19-66	260355	1387500	155	50	-50	270	Moussala N
ACMou-19-67	260330	1387500	152	50	-50	270	Moussala N
ACMou-19-68	260305	1387500	149	50	-50	270	Moussala N
ACMou-19-69	261160	1388700	169	50	-50	270	Moussala N
ACMou-19-70	261130	1388700	167	50	-50	270	Moussala N
ACMou-19-71	261106	1388700	167	50	-50	270	Moussala N
ACMou-19-72	261080	1388700	165	50	-50	270	Moussala N
ACMou-19-73	261056	1388700	168	50	-50	270	Moussala N
ACMou-19-74	261225	1389310	183	50	-50	270	Moussala N
ACMou-19-75	261195	1389309	175	50	-50	270	Moussala N
ACMou-19-76	261166	1389310	174	50	-50	270	Moussala N
ACMou-19-77	261135	1389310	178	50	-50	270	Moussala N
ACMou-19-78	261105	1389310	186	50	-50	270	Moussala N
ACMou-19-79	262425	1390885	198	50	-50	270	Moussala N
ACMou-19-80	262395	1390884	201	50	-50	270	Moussala N
ACMou-19-81	262364	1390885	197	50	-50	270	Moussala N
ACMou-19-82	262335	1390885	194	50	-50	270	Moussala N
ACMou-19-83	262306	1390884	182	50	-50	270	Moussala N
ACMou-19-84	262915	1390710	180	50	-50	270	Moussala N
ACMou-19-85	262885	1390710	183	50	-50	270	Moussala N
ACMou-19-86	262855	1390710	186	50	-50	270	Moussala N
ACMou-19-87	262825	1390711	189	50	-50	270	Moussala N
ACMou-19-88	262796	1390711	192	50	-50	270	Moussala N
ACMou-19-89	263211	1392100	187	50	-50	270	Moussala N
ACMou-19-90	263181	1392100	176	50	-50	270	Moussala N
ACMou-19-91	263155	1392101	177	50	-50	270	Moussala N
ACMou-19-92	263131	1392101	176	50	-50	270	Moussala N
ACMou-19-93	263105	1392101	179	50	-50	270	Moussala N
ACMou-19-94	263070	1395100	179	50	-50	270	Moussala N
ACMou-19-95	263041	1395100	182	50	-50	270	Moussala N
ACMou-19-96	263016	1395100	174	50	-50	270	Moussala N
ACMou-19-97	262991	1395100	175	50	-50	270	Moussala N
ACMou-19-98	262966	1395100	181	50	-50	270	Moussala N
ACMou-19-99	264294	1394909	177	50	-50	270	Moussala N
ACMou-19-100	264266	1394910	180	50	-50	270	Moussala N
ACMou-19-101	264240	1394909	170	50	-50	270	Moussala N
ACMou-19-102	264216	1394910	161	50	-50	270	Moussala N
ACMou-19-103	264190	1394909	168	50	-50	270	Moussala N
ACNia-19-01	270941	1380260	196.37	48	-50	270	Niala
ACNia-19-02	270910	1380264	197.50	42	-50	270	Niala
ACNia-19-03	270884	1380265	198.02	40	-50	270	Niala

	AC DRILL HOLE LOCATIONS										
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit				
ACNia-19-04	270855	1380261	196.77	36	-50	270	Niala				
ACNia-19-05	270800	1380269	187.97	18	-50	270	Niala				
ACNia-19-06	269640	1379914	154.72	18	-50	270	Niala				
ACNia-19-07	269623	1379914	154.95	20	-50	270	Niala				
ACNia-19-08	269601	1379911	155.31	26	-50	270	Niala				
ACNia-19-09	269585	1379915	155.58	30	-50	270	Niala				
ACNia-19-10	269553	1379915	156.18	30	-50	270	Niala				
ACNia-19-11	269534	1379914	156.08	24	-50	270	Niala				
ACNia-19-12	264950	1379709	185.00	50	-50	270	Niala				
ACNia-19-13	264918	1379708	184.91	50	-50	270	Niala				
ACNia-19-14	264888	1379715	185.27	50	-50	270	Niala				
ACNia-19-15	264861	1379709	185.07	50	-50	270	Niala				
ACNia-19-16	264831	1379711	184.58	50	-50	270	Niala				
ACNia-19-17	264801	1379709	183.55	50	-50	270	Niala				
ACNia-19-18	264770	1379709	181.76	50	-50	270	Niala				
ACNia-19-19	264741	1379710	180.57	50	-50	270	Niala				
ACNia-19-20	264708	1379709	181.04	50	-50	270	Niala				
ACNia-19-21	265189	1379900	185.76	50	-50	270	Niala				
ACNia-19-22	265161	1379901	187.75	50	-50	270	Niala				
ACNia-19-23	265131	1379902	189.07	50	-50	270	Niala				
ACNia-19-24	265100	1379899	189.73	50	-50	270	Niala				
ACNia-19-25	266241	1382299	195.14	50	-50	270	Niala				
ACNia-19-26	266210	1382299	195.93	50	-50	270	Niala				
ACNia-19-27	266181	1382299	197.95	50	-50	270	Niala				
ACNia-19-28	266150	1382299	200.33	50	-50	270	Niala				
ACNia-19-29	266120	1382299	201.39	50	-50	270	Niala				
ACNia-19-30	265511	1383499	175.28	36	-50	270	Niala				
ACNia-19-31	265489	1383499	175.35	30	-50	270	Niala				
ACNia-19-32	265470	1383499	175.81	30	-50	270	Niala				
ACNia-19-33	265451	1383499	176.27	34	-50	270	Niala				
ACNia-19-34	265431	1383499	176.57	30	-50	270	Niala				
ACNia-19-35	265413	1383499	176.80	30	-50	270	Niala				
ACNia-19-36	265394	1383499	177.07	36	-50	270	Niala				
ACSeg-19-01	253955	1387667	166.82	50	-50	270	Segando South				
ACSeg-19-02	253983	1387667	165.18	30	-50	270	Segando South				
ACSeg-19-03	254004	1387668	163.98	50	-50	270	Segando South				
ACSeg-19-04	254035	1387671	167.15	44	-50	270	Segando South				
ACSeg-19-05	254060	1387668	164.90	34	-50	270	Segando South				
ACSeg-19-06	254076	1387669	161.00	44	-50	270	Segando South				
ACSeg-19-07	253180	1390472	150.00	12	-50	270	Segando Sout				
ACSeg-19-08	253197	1390471	151.00	10	-50	270	Segando South				
ACSeg-19-09	253299	1390448	148.00	20	-50	270	Segando South				
ACSeg-19-10	253285	1390446	149.00	12	-50	270	Segando South				

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACSeg-19-11	253276	1390446	149.00	14	-50	270	Segando South
ACSeg-19-12	253265	1390446	150.00	12	-50	270	Segando South
ACSeg-19-13	253256	1390446	151.00	12	-50	270	Segando South
ACSeg-19-14	253250	1390446	151.00	12	-50	270	Segando South
ACSeg-19-15	253241	1390446	151.00	14	-50	270	Segando South
ACSeg-19-16	254519	1391841	185.50	50	-50	270	Segando South
ACSeg-19-17	254490	1391840	185.11	50	-50	270	Segando South
ACSeg-19-18	254461	1391841	184.11	50	-50	270	Segando South
ACSeg-19-19	254430	1391840	182.92	50	-50	270	Segando South
ACSeg-19-20	254400	1391838	181.33	50	-50	270	Segando South
ACSeg-19-21	254565	1394637	177.23	50	-50	270	Segando South
ACSeg-19-22	254535	1394638	178.75	50	-50	270	Segando South
ACSeg-19-23	254506	1394638	179.08	50	-50	270	Segando South
ACSeg-19-24	254474	1394637	178.95	50	-50	270	Segando South
ACSeg-19-25	254440	1394637	178.62	50	-50	270	Segando South
ACSeg-19-26	252425	1395055	190.39	50	-50	270	Segando South
ACSeg-19-27	252395	1395022	188.73	50	-50	270	Segando South
ACSeg-19-28	252364	1395022	182.12	40	-50	270	Segando South
ACSeg-19-29	252340	1395039	179.27	38	-50	270	Segando South
ACSeg-19-30	252315	1395039	179.27	46	-50	270	Segando South
ACSeg-19-31	254954	1398839	131.90	34	-50	270	Segando South
ACSeg-19-32	254933	1398840	133.23	42	-50	270	Segando South
ACSeg-19-33	254905	1398840	136.53	32	-50	270	Segando South
ACSeg-19-34	254886	1398840	140.04	36	-50	270	Segando South
ACSeg-19-35	254835	1398841	152.28	50	-50	270	Segando South
ACSeg-19-36	250676	1399041	157.27	18	-50	270	Segando South
ACSeg-19-37	250666	1399041	157.66	18	-50	270	Segando South
ACSeg-19-38	250615	1399040	160.77	30	-50	270	Segando South
ACSeg-19-39	250595	1399039	158.13	36	-50	270	Segando South
ACSeg-19-40	250575	1399028	154.42	33	-50	270	Segando South
ACSeg-19-41	250554	1399026	153.83	34	-50	270	Segando South
ACMan-19-163	262820	1375850	173	50	-50	270	Mankouké
ACMan-19-164	262796	1375849	173	50	-50	270	Mankouké
ACMan-19-165	262771	1375849	174	50	-50	270	Mankouké
ACMan-19-166	262744	1375849	175	50	-50	270	Mankouké
ACMan-19-167	262721	1375848	177	50	-50	270	Mankouké
ACMan-19-168	262696	1375850	177	50	-50	270	Mankouké
ACMan-19-169	262670	1375849	177	50	-50	270	Mankouké
ACMan-19-170	262644	1375848	178	50	-50	270	Mankouké
ACMan-19-171	262619	1375849	178	50	-50	270	Mankouké
ACMan-19-172	262594	1375848	177	50	-50	270	Mankouké
ACMan-19-173	262570	1375849	178	50	-50	270	Mankouké
ACMan-19-174	262542	1375849	179	50	-50	270	Mankouké

	AC DRILL HOLE LOCATIONS										
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit				
ACMAN20-277	263166	1378447	152	50	-50	270	Mankouké				
ACMAN20-278	263142	1378449	144	50	-50	270	Mankouké				
ACMAN20-279	263120	1378449	138	34	-50	270	Mankouké				
ACMAN20-280	263103	1378443	137	50	-50	270	Mankouké				
ACMAN20-281	263082	1378448	141	38	-50	270	Mankouké				
ACMAN20-282	263062	1378449	140	26	-50	270	Mankouké				
ACMAN20-283	263050	1378449	137	22	-50	270	Mankouké				
ACMAN20-284	263179	1378554	144	50	-50	270	Mankouké				
ACMAN20-285	262778	1375797	178	50	-50	270	Mankouké				
ACMAN20-286	262754	1375798	179	50	-50	270	Mankouké				
ACMAN20-287	262727	1375798	178	50	-50	270	Mankouké				
ACMAN20-288	262701	1375797	179	50	-50	270	Mankouké				
ACMAN20-289	262677	1375797	179	50	-50	270	Mankouké				
ACMAN20-290	262653	1375798	179	50	-50	270	Mankouké				
ACMAN20-291	262626	1375800	179	50	-50	270	Mankouké				
ACMAN20-292	262600	1375800	179	44	-50	270	Mankouké				
ACMAN20-293	262767	1375700	178	50	-50	270	Mankouké				
ACMAN20-294	262742	1375699	179	50	-50	270	Mankouké				
ACMAN20-295	262717	1375698	179	50	-50	270	Mankouké				
ACMAN20-296	262690	1375701	178	50	-50	270	Mankouké				
ACMAN20-297	262663	1375700	179	50	-50	270	Mankouké				
ACMAN20-298	262642	1375698	179	50	-50	270	Mankouké				
ACMAN20-299	262615	1375698	178	44	-50	270	Mankouké				
ACMAN20-300	262589	1375700	178	50	-50	270	Mankouké				
ACMAN20-301	262747	1375599	170	50	-50	270	Mankouké				
ACMAN20-302	262718	1375600	172	50	-50	270	Mankouké				
ACMAN20-303	262694	1375599	172	50	-50	270	Mankouké				
ACMAN20-304	262671	1375599	173	50	-50	270	Mankouké				
ACMAN20-305	262646	1375600	172	50	-50	270	Mankouké				
ACMAN20-306	262622	1375599	173	50	-50	270	Mankouké				
ACMAN20-307	262596	1375599	174	49	-50	270	Mankouké				
ACMAN20-308	262813	1375901	175	50	-50	270	Mankouké				
ACMAN20-309	262789	1375899	176	50	-50	270	Mankouké				
ACMAN20-310	262763	1375900	176	50	-50	270	Mankouké				
ACMAN20-311	262739	1375899	175	50	-50	270	Mankouké				
ACMAN20-312	262716	1375900	174	50	-50	270	Mankouké				
ACMAN20-313	262689	1375899	175	50	-50	270	Mankouké				
ACMAN20-314	262663	1375900	177	50	-50	270	Mankouké				
ACMAN20-315	262639	1375899	178	50	-50	270	Mankouké				
ACMAN20-316	262834	1376002	175	50	-50	270	Mankouké				
ACMAN20-317	262810	1376002	175	43	-50	270	Mankouké				
ACMAN20-318	262790	1376001	173	50	-50	270	Mankouké				
ACMAN20-319	262764	1376002	172	50	-50	270	Mankouké				

		AC DRI	LL HOLE LO	OCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACMAN20-320	262739	1376001	173	50	-50	270	Mankouké
ACMAN20-321	262713	1376000	172	50	-50	270	Mankouké
ACMAN20-322	262689	1376001	171	50	-50	270	Mankouké
ACMAN20-323	262664	1376001	170	43	-50	270	Mankouké
ACMAN20-324	262858	1376102	171	50	-50	270	Mankouké
ACMAN20-325	262836	1376100	170	50	-50	270	Mankouké
ACMAN20-326	262810	1376100	171	50	-50	270	Mankouké
ACMAN20-327	262785	1376101	170	50	-50	270	Mankouké
ACMAN20-328	262761	1376100	171	50	-50	270	Mankouké
ACMAN20-329	262734	1376101	170	26	-50	270	Mankouké
ACMAN20-330	262720	1376101	171	50	-50	270	Mankouké
ACMAN20-331	262699	1376099	172	50	-50	270	Mankouké
ACMAN20-332	262678	1376099	172	50	-50	270	Mankouké
ACMAN20-333	263179	1377370	152	25	-50	270	Mankouké
ACMAN20-334	263165	1377370	151	31	-50	270	Mankouké
ACMAN20-335	263138	1377371	152	21	-50	270	Mankouké
ACMAN20-336	263127	1377371	150	21	-50	270	Mankouké
ACMAN20-337	263180	1377469	152	41	-50	270	Mankouké
ACMAN20-338	263159	1377472	158	32	-50	270	Mankouké
ACMAN20-339	263147	1377470	151	26	-50	270	Mankouké
ACMAN20-340	263132	1377469	152	24	-50	270	Mankouké
ACMAN20-341	263121	1377469	149	27	-50	270	Mankouké
ACMAN20-342	263107	1377470	151	21	-50	270	Mankouké
ACMAN20-343	263419	1377470	151	43	-50	270	Mankouké
ACMAN20-344	263492	1377369	134	16	-50	270	Mankouké
ACMAN20-345	263483	1377369	143	11	-50	270	Mankouké
ACMAN20-346	263478	1377369	144	9	-50	270	Mankouké
ACMAN20-347	263473	1377369	140	14	-50	270	Mankouké
ACMAN20-348	263465	1377369	139	20	-50	270	Mankouké
ACMAN20-349	263456	1377369	142	19	-50	270	Mankouké
ACMAN20-350	263446	1377370	145	20	-50	270	Mankouké
ACMAN20-351	263434	1377370	145	20	-50	270	Mankouké
ACMAN20-352	263420	1377370	142	20	-50	270	Mankouké
ACMAN20-353	262433	1375861	180	44	-50	270	Mankouké
ACMAN20-354	262410	1375861	183	41	-50	270	Mankouké
ACMAN20-355	262388	1375860	180	50	-50	270	Mankouké
ACMAN20-356	262364	1375861	179	50	-50	270	Mankouké
ACMAN20-357	262341	1375860	178	50	-50	270	Mankouké
ACMAN20-358	262563	1376220	179	50	-50	270	Mankouké
ACMAN20-359	262538	1376218	175	50	-50	270	Mankouké
ACMAN20-360	262514	1376220	176	50	-50	270	Mankouké
ACMAN20-361	262489	1376218	177	50	-50	270	Mankouké
ACMAN20-362	262464	1376219	179	50	-50	270	Mankouké

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACMAN20-363	263378	1376620	159	44	-50	270	Mankouké
ACMAN20-364	263352	1376620	167	38	-50	270	Mankouké
ACMAN20-365	263338	1376619	160	45	-50	270	Mankouké
ACMAN20-366	263313	1376619	160	43	-50	270	Mankouké
ACMAN20-367	263287	1376620	167	50	-50	270	Mankouké
ACMAN20-368	263264	1376620	163	50	-50	270	Mankouké
ACMAN20-369	263238	1376620	165	50	-50	270	Mankouké
ACMAN20-370	263214	1376619	166	50	-50	270	Mankouké
ACMAN20-371	263188	1376619	172	44	-50	270	Mankouké
ACMAN20-372	263168	1376618	171	41	-50	270	Mankouké
ACMAN20-373	263145	1376620	175	46	-50	270	Mankouké
ACMAN20-374	263123	1376620	178	50	-50	270	Mankouké
ACMAN20-375	263098	1376619	173	50	-50	270	Mankouké
ACMAN20-376	263074	1376621	171	50	-50	270	Mankouké
ACMAN20-377	263046	1376620	167	50	-50	270	Mankouké
ACMAN20-378	263023	1376620	169	50	-50	270	Mankouké
ACMAN20-379	262998	1376621	171	50	-50	270	Mankouké
ACMAN20-380	262972	1376621	166	50	-50	270	Mankouké
ACMAN20-381	262949	1376622	173	46	-50	270	Mankouké
ACMAN20-382	262925	1376622	170	37	-50	270	Mankouké
ACMAN20-383	262907	1376622	171	26	-50	270	Mankouké
ACMAN20-384	262894	1376622	170	27	-50	270	Mankouké
ACMAN20-385	262879	1376622	171	28	-50	270	Mankouké
ACMAN20-386	262869	1376620	172	35	-50	270	Mankouké
ACMAN20-387	262849	1376622	170	34	-50	270	Mankouké
ACMAN20-388	262833	1376622	170	38	-50	270	Mankouké
ACMAN20-389	262684	1376619	177	39	-50	270	Mankouké
ACMAN20-390	262666	1376620	176	50	-50	270	Mankouké
ACMAN20-391	262639	1376621	181	50	-50	270	Mankouké
ACMAN20-392	262617	1376618	182	50	-50	270	Mankouké
ACMAN20-393	262591	1376619	171	50	-50	270	Mankouké
ACMAN20-394	262565	1376619	171	50	-50	270	Mankouké
ACMAN20-395	262541	1376617	168	50	-50	270	Mankouké
ACMAN20-396	262514	1376620	159	50	-50	270	Mankouké
ACMAN20-397	262490	1376619	165	50	-50	270	Mankouké
ACMAN20-398	262465	1376619	169	50	-50	270	Mankouké
ACMAN20-399	262438	1376619	166	50	-50	270	Mankouké
ACMAN20-400	262413	1376619	171	50	-50	270	Mankouké
ACMAN20-401	262389	1376619	171	50	-50	270	Mankouké
ACMAN20-402	262365	1376619	177	50	-50	270	Mankouké
ACMAN20-403	262341	1376619	169	50	-50	270	Mankouké
ACMAN20-404	262316	1376618	176	48	-50	270	Mankouké
ACMAN20-405	263459	1377080	163	23	-50	270	Mankouké

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACMAN20-406	263448	1377079	167	18	-50	270	Mankouké
ACMAN20-407	263439	1377079	168	24	-50	270	Mankouké
ACMAN20-408	263426	1377078	159	23	-50	270	Mankouké
ACMAN20-409	263417	1377078	162	26	-50	270	Mankouké
ACMAN20-410	263400	1377078	161	36	-50	270	Mankouké
ACMAN20-411	263382	1377075	161	39	-50	270	Mankouké
ACMAN20-412	263363	1377079	164	39	-50	270	Mankouké
ACMAN20-413	263537	1377078	168	27	-50	270	Mankouké
ACMAN20-414	263526	1377081	161	27	-50	270	Mankouké
ACMAN20-415	263511	1377078	161	34	-50	270	Mankouké
ACMAN20-416	263497	1377080	152	36	-50	270	Mankouké
ACMAN20-417	263344	1377080	160	34	-50	270	Mankouké
ACMAN20-418	263329	1377079	161	33	-50	270	Mankouké
ACMAN20-419	263310	1377080	161	33	-50	270	Mankouké
ACMAN20-420	263296	1377080	161	38	-50	270	Mankouké
ACMAN20-421	263275	1377079	162	50	-50	270	Mankouké
ACMAN20-422	263252	1377079	163	50	-50	270	Mankouké
ACMAN20-423	263227	1377080	171	50	-50	270	Mankouké
ACMAN20-424	263203	1377078	174	38	-50	270	Mankouké
ACMAN20-425	263183	1377079	180	39	-50	270	Mankouké
ACMAN20-426	263163	1377079	168	39	-50	270	Mankouké
ACMAN20-427	263143	1377079	159	39	-50	270	Mankouké
ACMAN20-428	263123	1377079	169	45	-50	270	Mankouké
ACMAN20-429	263100	1377078	175	42	-50	270	Mankouké
ACMAN20-430	263077	1377079	160	45	-50	270	Mankouké
ACMAN20-431	263056	1377079	164	44	-50	270	Mankouké
ACMAN20-432	263032	1377079	163	41	-50	270	Mankouké
ACMAN20-433	263011	1377079	164	37	-50	270	Mankouké
ACMAN20-434	262994	1377080	165	37	-50	270	Mankouké
ACMAN20-435	262975	1377079	173	33	-50	270	Mankouké
ACMAN20-436	262960	1377078	169	39	-50	270	Mankouké
ACMAN20-437	262941	1377079	169	37	-50	270	Mankouké
ACMAN20-438	262922	1377079	169	42	-50	270	Mankouké
ACMAN20-439	262901	1377079	173	40	-50	270	Mankouké
ACMAN20-440	262881	1377075	174	42	-50	270	Mankouké
ACMAN20-441	262860	1377079	171	50	-50	270	Mankouké
ACMAN20-442	262836	1377079	173	50	-50	270	Mankouké
ACMAN20-443	262811	1377079	169	50	-50	270	Mankouké
ACMAN20-444	262786	1377079	170	50	-50	270	Mankouké
ACMAN20-445	262761	1377079	166	48	-50	270	Mankouké
ACMAN20-446	262737	1377078	167	48	-50	270	Mankouké
ACMAN20-447	262712	1377078	167	50	-50	270	Mankouké
ACMAN20-448	262688	1377078	162	50	-50	270	Mankouké

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACMAN20-449	262662	1377079	167	50	-50	270	Mankouké
ACMAN20-450	262635	1377078	169	50	-50	270	Mankouké
ACMAN20-451	262613	1377075	167	50	-50	270	Mankouké
ACMAN20-452	262589	1377075	166	50	-50	270	Mankouké
ACMAN20-453	262561	1377078	166	43	-50	270	Mankouké
ACMAN20-454	262541	1377075	171	50	-50	270	Mankouké
ACMAN20-455	262515	1377079	173	50	-50	270	Mankouké
ACMAN20-456	262492	1377079	173	50	-50	270	Mankouké
ACMAN20-457	262467	1377080	174	42	-50	270	Mankouké
ACMAN20-458	262444	1377080	168	36	-50	270	Mankouké
ACMAN20-459	262424	1377081	166	33	-50	270	Mankouké
ACMAN20-460	262409	1377080	162	40	-50	270	Mankouké
ACMAN20-461	262391	1377081	159	50	-50	270	Mankouké
ACMAN20-462	262363	1377081	163	34	-50	270	Mankouké
ACMAN20-463	262344	1377080	166	39	-50	270	Mankouké
ACMAN20-464	262326	1377080	174	42	-50	270	Mankouké
ACMAN20-465	262496	1376390	177	39	-50	270	Mankouké
ACMAN20-466	262478	1376390	178	50	-50	270	Mankouké
ACMAN20-467	262453	1376390	178	50	-50	270	Mankouké
ACMAN20-468	262428	1376390	178	50	-50	270	Mankouké
ACMAN20-469	262402	1376391	177	50	-50	270	Mankouké
ACMAN20-470	262378	1376390	176	50	-50	270	Mankouké
ACMAN20-471	262353	1376390	176	50	-50	270	Mankouké
ACMAN20-472	262326	1376388	175	50	-50	270	Mankouké
ACMAN20-473	262303	1376389	175	50	-50	270	Mankouké
ACMAN20-474	263425	1377538	149	30	-50	270	Mankouké
ACMAN20-475	263411	1377539	147	24	-50	270	Mankouké
ACMAN20-476	263399	1377539	146	24	-50	270	Mankouké
ACMAN20-477	263526	1377577	140	12	-50	270	Mankouké
ACMAN20-478	263520	1377580	144	12	-50	270	Mankouké
ACMAN20-479	263514	1377580	142	11	-50	270	Mankouké
ACMAN20-480	263505	1377580	143	8	-50	270	Mankouké
ACMAN20-481	263506	1377579	145	9	-50	270	Mankouké
ACMAN20-482	263499	1377580	142	8	-50	270	Mankouké
ACMAN20-483	263496	1377580	143	7	-50	270	Mankouké
ACMAN20-484	263493	1377580	143	12	-50	270	Mankouké
ACMAN20-485	263484	1377580	144	18	-50	270	Mankouké
ACMAN20-486	263475	1377580	143	12	-50	270	Mankouké
ACMAN20-487	263383	1377540	148	29	-50	270	Mankouké
ACMAN20-488	263368	1377540	145	28	-50	270	Mankouké
ACMAN20-489	263355	1377541	151	23	-50	270	Mankouké
ACMAN20-490	263324	1377580	153	30	-50	270	Mankouké
ACMAN20-491	263309	1377580	153	32	-50	270	Mankouké

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACMAN20-492	263297	1377580	141	30	-50	270	Mankouké
ACMAN20-493	263280	1377579	138	31	-50	270	Mankouké
ACMAN20-494	263262	1377579	141	28	-50	270	Mankouké
ACMAN20-495	263252	1377579	141	28	-50	270	Mankouké
ACMAN20-496	263236	1377580	145	29	-50	270	Mankouké
ACMAN20-497	263219	1377582	149	29	-50	270	Mankouké
ACMAN20-498	263205	1377579	130	24	-50	270	Mankouké
ACMAN20-499	263191	1377580	149	26	-50	270	Mankouké
ACMAN20-500	263180	1377580	147	26	-50	270	Mankouké
ACMAN20-501	263167	1377580	144	16	-50	270	Mankouké
ACMAN20-502	263158	1377580	165	17	-50	270	Mankouké
ACMAN20-503	263150	1377581	152	18	-50	270	Mankouké
ACMAN20-504	263140	1377580	156	19	-50	270	Mankouké
ACMAN20-505	263132	1377579	157	17	-50	270	Mankouké
ACMAN20-506	263124	1377580	157	19	-50	270	Mankouké
ACMAN20-507	263114	1377580	156	24	-50	270	Mankouké
ACMAN20-508	263101	1377580	158	20	-50	270	Mankouké
ACMAN20-509	263089	1377580	147	22	-50	270	Mankouké
ACMAN20-510	263079	1377580	150	24	-50	270	Mankouké
ACMAN20-511	263064	1377580	155	20	-50	270	Mankouké
ACMAN20-512	263053	1377580	158	18	-50	270	Mankouké
ACMAN20-513	263045	1377580	159	21	-50	270	Mankouké
ACMAN20-514	263036	1377580	158	21	-50	270	Mankouké
ACMAN20-515	263022	1377580	151	21	-50	270	Mankouké
ACMAN20-516	263019	1377579	146	21	-50	270	Mankouké
ACMAN20-517	263003	1377578	150	26	-50	270	Mankouké
ACMAN20-518	262993	1377578	149	50	-50	270	Mankouké
ACMAN20-519	262968	1377578	157	50	-50	270	Mankouké
ACMAN20-520	262944	1377580	164	50	-50	270	Mankouké
ACMAN20-521	262918	1377580	180	50	-50	270	Mankouké
ACMAN20-522	262895	1377580	167	43	-50	270	Mankouké
ACMAN20-523	262871	1377579	165	39	-50	270	Mankouké
ACMAN20-524	262850	1377580	160	43	-50	270	Mankouké
ACMAN20-525	262829	1377580	154	46	-50	270	Mankouké
ACMAN20-526	262805	1377580	163	48	-50	270	Mankouké
ACMAN20-527	262777	1377580	158	45	-50	270	Mankouké
ACMAN20-528	262755	1377579	149	48	-50	270	Mankouké
ACMAN20-529	262729	1377579	150	39	-50	270	Mankouké
ACMAN20-530	262711	1377579	155	50	-50	270	Mankouké
ACMAN20-531	262687	1377578	154	50	-50	270	Mankouké
ACMAN20-532	262662	1377579	158	50	-50	270	Mankouké
ACMAN20-533	262636	1377580	158	37	-50	270	Mankouké
ACMAN20-534	262617	1377580	158	31	-50	270	Mankouké

	AC DRILL HOLE LOCATIONS										
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit				
ACMAN20-535	262600	1377580	157	38	-50	270	Mankouké				
ACMAN20-536	262583	1377582	161	45	-50	270	Mankouké				
ACMAN20-537	262558	1377580	159	41	-50	270	Mankouké				
ACMAN20-538	262538	1377580	159	41	-50	270	Mankouké				
ACMAN20-539	262517	1377580	156	42	-50	270	Mankouké				
ACMAN20-540	262496	1377580	148	47	-50	270	Mankouké				
ACMAN20-541	262470	1377580	150	50	-50	270	Mankouké				
ACMAN20-542	262446	1377580	152	50	-50	270	Mankouké				
ACMAN20-543	262419	1377580	150	50	-50	270	Mankouké				
ACMAN20-544	262396	1377579	162	50	-50	270	Mankouké				
ACMAN20-545	262372	1377580	161	50	-50	270	Mankouké				
ACMAN20-546	262345	1377580	164	50	-50	270	Mankouké				
ACMAN20-547	262319	1377580	162	50	-50	270	Mankouké				
ACMAN20-548	263564	1380349	179	50	-50	270	Mankouké				
ACMAN20-549	263540	1380350	187	50	-50	270	Mankouké				
ACMAN20-550	263431	1380349	184	50	-50	270	Mankouké				
ACMAN20-551	263406	1380350	183	50	-50	270	Mankouké				
ACMAN20-552	263380	1380350	179	50	-50	270	Mankouké				
ACMAN20-553	263355	1380350	174	50	-50	270	Mankouké				
ACMAN20-554	263333	1380348	174	50	-50	270	Mankouké				
ACMAN20-555	263306	1380348	168	50	-50	270	Mankouké				
ACMAN20-556	263282	1380351	168	50	-50	270	Mankouké				
ACMAN20-557	263256	1380352	167	50	-50	270	Mankouké				
ACMAN20-558	263232	1380351	165	50	-50	270	Mankouké				
ACMAN20-559	263729	1380951	166	50	-50	270	Mankouké				
ACMAN20-560	263704	1380948	175	50	-50	270	Mankouké				
ACMAN20-561	263677	1380950	172	50	-50	270	Mankouké				
ACMAN20-562	263652	1380950	178	50	-50	270	Mankouké				
ACMAN20-563	263628	1380947	180	50	-50	270	Mankouké				
ACMAN20-564	263604	1380947	185	50	-50	270	Mankouké				
ACMAN20-565	263573	1380949	176	50	-50	270	Mankouké				
ACMAN20-566	263549	1380948	177	50	-50	270	Mankouké				
ACMAN20-567	263720	1381050	159	50	-50	270	Mankouké				
ACMAN20-568	263696	1381050	156	50	-50	270	Mankouké				
ACMAN20-569	263676	1381051	172	50	-50	270	Mankouké				
ACMAN20-570	263650	1381051	177	50	-50	270	Mankouké				
ACMAN20-571	263626	1381051	177	50	-50	270	Mankouké				
ACMAN20-572	263601	1381051	173	46	-50	270	Mankouké				
ACMAN20-573	263577	1381052	169	36	-50	270	Mankouké				
ACMAN20-574	263560	1381053	163	39	-50	270	Mankouké				
ACMAN20-575	263276	1376400	162	50	-50	270	Mankouké				
ACMAN20-576	263253	1376398	162	50	-50	270	Mankouké				
ACMAN20-577	263224	1376398	156	34	-50	270	Mankouké				

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACMAN20-578	263210	1376400	153	33	-50	270	Mankouké
ACMAN20-579	263193	1376399	158	32	-50	270	Mankouké
ACMAN20-580	263180	1376397	159	31	-50	270	Mankouké
ACMAN20-581	263162	1376395	161	32	-50	270	Mankouké
ACMAN20-582	263149	1376395	161	30	-50	270	Mankouké
ACMAN20-583	263132	1376397	165	32	-50	270	Mankouké
ACMAN20-584	263117	1376400	170	46	-50	270	Mankouké
ACMAN20-585	263094	1376400	171	44	-50	270	Mankouké
ACMAN20-586	263072	1376400	178	44	-50	270	Mankouké
ACMAN20-587	263049	1376400	177	50	-50	270	Mankouké
ACMAN20-588	263024	1376399	167	50	-50	270	Mankouké
ACMAN20-589	263000	1376398	169	50	-50	270	Mankouké
ACMAN20-590	262974	1376398	171	50	-50	270	Mankouké
ACMAN20-591	262950	1376400	161	47	-50	270	Mankouké
ACMAN20-592	262825	1376400	170	46	-50	270	Mankouké
ACMAN20-593	262802	1376400	175	50	-50	270	Mankouké
ACMAN20-594	262777	1376400	167	50	-50	270	Mankouké
ACMAN20-595	262753	1376400	170	50	-50	270	Mankouké
ACMAN20-596	262727	1376400	170	50	-50	270	Mankouké
ACMAN20-597	262703	1376398	171	50	-50	270	Mankouké
ACMAN20-598	262678	1376400	177	48	-50	270	Mankouké
ACMAN20-599	262979	1376501	165	42	-50	270	Mankouké
ACMAN20-600	262957	1376501	168	42	-50	270	Mankouké
ACMAN20-601	262936	1376500	168	50	-50	270	Mankouké
ACMAN20-602	262910	1376500	172	50	-50	270	Mankouké
ACMAN20-603	262888	1376499	174	46	-50	270	Mankouké
ACMAN20-604	263093	1376501	165	36	-50	270	Mankouké
ACMAN20-605	263078	1376501	170	36	-50	270	Mankouké
ACMAN20-606	263055	1376501	170	36	-50	270	Mankouké
ACMAN20-607	263042	1376500	171	38	-50	270	Mankouké
ACMAN20-608	263022	1376500	164	37	-50	270	Mankouké
ACMAN20-609	263004	1376502	163	39	-50	270	Mankouké
ACMAN20-610	262864	1376501	170	50	-50	270	Mankouké
ACMAN20-611	262840	1376500	173	50	-50	270	Mankouké
ACMAN20-612	262815	1376499	173	46	-50	270	Mankouké
ACMAN20-613	262790	1376499	175	48	-50	270	Mankouké
ACMAN20-614	262767	1376500	177	42	-50	270	Mankouké
ACMAN20-615	262747	1376500	176	39	-50	270	Mankouké
ACMAN20-616	262727	1376500	177	36	-50	270	Mankouké
ACMAN20-617	262652	1376399	175	35	-50	270	Mankouké
ACMAN20-618	262633	1376400	174	31	-50	270	Mankouké
ACMAN20-619	262617	1376399	171	30	-50	270	Mankouké
ACMAN20-620	262601	1376398	172	23	-50	270	Mankouké

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACMAN20-621	262591	1376398	172	34	-50	270	Mankouké
ACMAN20-622	262574	1376400	173	22	-50	270	Mankouké
ACMAN20-623	262567	1376400	173	20	-50	270	Mankouké
ACMAN20-624	262552	1376399	170	20	-50	270	Mankouké
ACMAN20-625	262542	1376399	171	24	-50	270	Mankouké
ACMAN20-626	262530	1376399	172	32	-50	270	Mankouké
ACMAN20-627	262515	1376399	172	28	-50	270	Mankouké
ACMAN20-628	263019	1376300	172	50	-50	270	Mankouké
ACMAN20-629	262993	1376301	172	50	-50	270	Mankouké
ACMAN20-630	262970	1376300	172	50	-50	270	Mankouké
ACMAN20-631	262942	1376300	173	50	-50	270	Mankouké
ACMAN20-632	262921	1376300	170	49	-50	270	Mankouké
ACMAN20-633	262901	1376298	170	48	-50	270	Mankouké
ACMAN20-634	262876	1376300	172	42	-50	270	Mankouké
ACMAN20-635	262853	1376299	170	37	-50	270	Mankouké
ACMAN20-636	262832	1376298	171	50	-50	270	Mankouké
ACMAN20-637	262807	1376301	169	50	-50	270	Mankouké
ACMAN20-638	262782	1376300	168	50	-50	270	Mankouké
ACMAN20-639	262756	1376300	168	50	-50	270	Mankouké
ACMAN20-640	262732	1376300	169	50	-50	270	Mankouké
ACMAN20-641	262708	1376300	168	50	-50	270	Mankouké
ACMAN20-642	262685	1376300	169	50	-50	270	Mankouké
ACMAN20-643	262662	1376300	170	38	-50	270	Mankouké
ACMAN20-644	262641	1376302	172	37	-50	270	Mankouké
ACMAN20-645	262621	1376301	172	31	-50	270	Mankouké
ACMAN20-646	262607	1376302	171	36	-50	270	Mankouké
ACMAN20-647	262587	1376301	172	41	-50	270	Mankouké
ACMAN20-648	262568	1376300	173	50	-50	270	Mankouké
ACMAN20-649	262543	1376300	172	50	-50	270	Mankouké
ACMAN20-650	262519	1376301	174	50	-50	270	Mankouké
ACMAN20-651	262493	1376299	175	50	-50	270	Mankouké
ACMAN20-652	262468	1376299	173	50	-50	270	Mankouké
ACMAN20-653	262448	1376300	170	50	-50	270	Mankouké
ACMAN20-654	262418	1376300	173	50	-50	270	Mankouké
ACMAN20-655	262392	1376301	176	50	-50	270	Mankouké
ACMAN20-656	262368	1376300	177	50	-50	270	Mankouké
ACMAN20-657	262345	1376299	179	50	-50	270	Mankouké
ACMAN20-658	262321	1376300	178	50	-50	270	Mankouké
ACMAN20-659	262295	1376299	180	50	-50	270	Mankouké
ACMAN20-660	262501	1376349	176	50	-50	270	Mankouké
ACMAN20-661	262477	1376350	175	50	-50	270	Mankouké
ACMAN20-662	262451	1376349	174	50	-50	270	Mankouké
ACMAN20-663	262426	1376349	176	50	-50	270	Mankouké

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACMAN20-664	262480	1376350	174	50	-50	270	Mankouké
ACMAN20-665	262375	1376352	175	50	-50	270	Mankouké
ACMAN20-666	263155	1378550	138	48	-50	270	Mankouké
ACMAN20-667	263132	1378550	136	28	-50	270	Mankouké
ACMAN20-668	263121	1378550	137	34	-50	270	Mankouké
ACMAN20-669	263102	1378549	138	30	-50	270	Mankouké
ACMAN20-670	263084	1378550	142	30	-50	270	Mankouké
ACMAN20-671	263525	1379297	161	50	-50	270	Mankouké
ACMAN20-672	263501	1379297	154	50	-50	270	Mankouké
ACMAN20-673	263475	1379299	159	48	-50	270	Mankouké
ACMAN20-674	263450	1379299	158	42	-50	270	Mankouké
ACMAN20-675	263430	1379300	158	50	-50	270	Mankouké
ACMAN20-676	263409	1379299	155	50	-50	270	Mankouké
ACMAN20-677	263377	1379299	156	50	-50	270	Mankouké
ACMAN20-678	263353	1379299	158	50	-50	270	Mankouké
ACMAN20-679	263331	1379299	149	45	-50	270	Mankouké
ACMAN20-680	263308	1379299	148	40	-50	270	Mankouké
ACMAN20-681	263278	1379300	150	36	-50	270	Mankouké
ACMAN20-682	263271	1379298	151	30	-50	270	Mankouké
ACMAN20-683	263254	1379298	156	34	-50	270	Mankouké
ACMAN20-684	263235	1379296	145	22	-50	270	Mankouké
ACMAN20-685	263227	1379301	143	20	-50	270	Mankouké
ACMAN20-686	263217	1379299	141	24	-50	270	Mankouké
ACMAN20-687	263204	1379302	143	18	-50	270	Mankouké
ACMAN20-688	263194	1379299	141	12	-50	270	Mankouké
ACMAN20-689	263186	1379299	145	8	-50	270	Mankouké
ACMAN20-690	263181	1379298	145	8	-50	270	Mankouké
ACMAN20-691	263178	1379298	147	6	-50	270	Mankouké
ACMAN20-692	263172	1379297	147	6	-50	270	Mankouké
ACMAN20-693	263186	1379297	143	6	-50	270	Mankouké
ACMAN20-694	263161	1379300	143	6	-50	270	Mankouké
ACMAN20-695	263164	1379300	148	8	-50	270	Mankouké
ACMAN20-696	263159	1379301	140	10	-50	270	Mankouké
ACMAN20-697	263155	1379301	138	8	-50	270	Mankouké
ACMAN20-698	263152	1379301	140	8	-50	270	Mankouké
ACMAN20-699	263147	1379299	142	8	-50	270	Mankouké
ACMAN20-700	263144	1379300	141	9	-50	270	Mankouké
ACMAN20-701	263140	1379299	143	8	-50	270	Mankouké
ACMAN20-702	263136	1379300	142	9	-50	270	Mankouké
ACMAN20-703	263130	1379300	142	13	-50	270	Mankouké
ACMAN20-704	263124	1379300	136	11	-50	270	Mankouké
ACMAN20-705	263118	137931	134	9	-50	270	Mankouké
ACMAN20-706	262486	1379701	175	50	-50	270	Mankouké

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACMAN20-707	262459	1379700	172	50	-50	270	Mankouké
ACMAN20-708	262433	1379700	179	50	-50	270	Mankouké
ACMAN20-709	262405	1379698	181	50	-50	270	Mankouké
ACMAN20-710	262379	1379699	184	50	-50	270	Mankouké
ACMAN20-711	262354	1379696	182	50	-50	270	Mankouké
ACMAN20-712	262330	1379695	181	50	-50	270	Mankouké
ACMAN20-713	262305	1379696	180	50	-50	270	Mankouké
ACMAN20-714	262738	1379697	152	50	-50	270	Mankouké
ACMAN20-715	262713	1379698	153	50	-50	270	Mankouké
ACMAN20-716	262689	1379696	142	50	-50	270	Mankouké
ACMAN20-717	262666	1379699	147	50	-50	270	Mankouké
ACMAN20-718	262639	1379700	137	50	-50	270	Mankouké
ACMAN20-719	262611	1379706	152	50	-50	270	Mankouké
ACMAN20-720	262586	1379698	158	50	-50	270	Mankouké
ACMAN20-721	262561	1379694	158	50	-50	270	Mankouké
ACMAN20-722	262538	1379699	171	50	-50	270	Mankouké
ACMAN20-723	262516	1379699	179	50	-50	270	Mankouké
ACMAN20-724	262941	1379696	142	12	-50	270	Mankouké
ACMAN20-725	262932	1379694	141	14	-50	270	Mankouké
ACMAN20-726	262928	1379695	143	16	-50	270	Mankouké
ACMAN20-727	262919	1379695	144	18	-50	270	Mankouké
ACMAN20-728	262911	1379698	145	20	-50	270	Mankouké
ACMAN20-729	262898	1379695	145	16	-50	270	Mankouké
ACMAN20-730	262890	1379695	143	14	-50	270	Mankouké
ACMAN20-731	262885	1379695	140	16	-50	270	Mankouké
ACMAN20-732	262875	1379697	142	16	-50	270	Mankouké
ACMAN20-733	262867	1379697	143	16	-50	270	Mankouké
ACMAN20-734	262860	1379695	143	18	-50	270	Mankouké
ACMAN20-735	262851	1379695	147	14	-50	270	Mankouké
ACMAN20-736	262843	1379695	148	20	-50	270	Mankouké
ACMAN20-737	262837	1379695	149	26	-50	270	Mankouké
ACMAN20-738	262824	1379696	148	24	-50	270	Mankouké
ACMAN20-739	262812	1379698	145	34	-50	270	Mankouké
ACMAN20-740	262796	1379696	144	34	-50	270	Mankouké
ACMAN20-741	262778	1379698	139	50	-50	270	Mankouké
ACMAN20-742	262754	1379698	134	50	-50	270	Mankouké
ACMAN20-743	263528	1379699	155	37	-50	270	Mankouké
ACMAN20-744	263510	1379700	152	50	-50	270	Mankouké
ACMAN20-745	263485	1379700	150	46	-50	270	Mankouké
ACMAN20-746	263459	1379698	147	23	-50	270	Mankouké
ACMAN20-747	263450	1379700	150	22	-50	270	Mankouké
ACMAN20-748	263438	1779699	152	28	-50	270	Mankouké
ACMAN20-749	263424	1379699	154	26	-50	270	Mankouké

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACMAN20-750	263410	1379699	155	18	-50	270	Mankouké
ACMAN20-751	263403	1379698	154	18	-50	270	Mankouké
ACMAN20-752	263393	1379700	154	16	-50	270	Mankouké
ACMAN20-753	263389	1379701	150	18	-50	270	Mankouké
ACMAN20-754	263376	1379698	149	16	-50	270	Mankouké
ACMAN20-755	263365	1379698	150	19	-50	270	Mankouké
ACMAN20-756	263357	1379698	149	22	-50	270	Mankouké
ACMAN20-757	263345	1379699	148	16	-50	270	Mankouké
ACMAN20-758	263340	1379698	149	14	-50	270	Mankouké
ACMAN20-759	263329	1379699	151	13	-50	270	Mankouké
ACMAN20-760	263323	1379700	153	10	-50	270	Mankouké
ACMAN20-761	263318	1379700	153	9	-50	270	Mankouké
ACMAN20-762	263314	1379700	153	8	-50	270	Mankouké
ACMAN20-763	263309	1379700	153	8	-50	270	Mankouké
ACMAN20-764	263308	1379700	143	8	-50	270	Mankouké
ACMAN20-765	263304	1379700	143	6	-50	270	Mankouké
ACMAN20-766	263300	1379699	143	8	-50	270	Mankouké
ACMAN20-767	263296	1379700	143	8	-50	270	Mankouké
ACMAN20-768	263293	1379700	144	8	-50	270	Mankouké
ACMAN20-769	263288	1379700	145	8	-50	270	Mankouké
ACMAN20-770	263284	1379700	147	10	-50	270	Mankouké
ACMAN20-771	263278	1379700	147	14	-50	270	Mankouké
ACMAN20-772	263271	1379699	147	19	-50	270	Mankouké
ACMAN20-773	263261	1379700	144	19	-50	270	Mankouké
ACMAN20-774	263251	1379700	143	17	-50	270	Mankouké
ACMAN20-775	263241	1379700	142	14	-50	270	Mankouké
ACMAN20-776	263234	1379700	142	11	-50	270	Mankouké
ACMAN20-777	263230	1379701	142	11	-50	270	Mankouké
ACMAN20-778	263222	1379700	143	13	-50	270	Mankouké
ACMAN20-779	263213	1379700	143	17	-50	270	Mankouké
ACMAN20-780	263204	1379699	147	8	-50	270	Mankouké
ACMAN20-781	263203	1379698	149	11	-50	270	Mankouké
ACMAN20-782	263197	1379699	151	9	-50	270	Mankouké
ACMAN20-783	263193	1379699	151	7	-50	270	Mankouké
ACMAN20-784	263188	1379700	146	9	-50	270	Mankouké
ACMAN20-785	263184	1379698	144	14	-50	270	Mankouké
ACKAO20-01	250425	1385580	146	14	-50	270	Regional
ACKAO20-02	250415	1385582	147	18	-50	270	Regional
ACKAO20-03	250405	1385583	146	20	-50	270	Regional
ACKAO20-04	250395	1385581	151	38	-50	270	Regional
ACKAO20-05	250375	1385581	151	36	-50	270	Regional
ACKAO20-06	250355	1385581	154	44	-50	270	Regional
ACKAO20-07	250336	1385581	153	24	-50	270	Regional

	AC DRILL HOLE LOCATIONS										
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit				
ACKAO20-08	250323	1385580	157	36	-50	270	Regional				
ACKAO20-09	250305	1385581	152	30	-50	270	Regional				
ACKAO20-10	250289	1385580	154	47	-50	270	Regional				
ACKAO20-11	250265	1385579	152	26	-50	270	Regional				
ACKAO20-12	250249	1385580	150	36	-50	270	Regional				
ACKAO20-13	250235	1385580	149	35	-50	270	Regional				
ACKAO20-14	250216	1385582	151	36	-50	270	Regional				
ACKAO20-15	250198	1385581	150	29	-50	270	Regional				
ACKAO20-16	250179	1385579	153	40	-50	270	Regional				
ACKAO20-17	250160	1385581	144	38	-50	270	Regional				
ACKAO20-18	250026	1385579	142	25	-50	270	Regional				
ACKAO20-19	250011	1385579	145	26	-50	270	Regional				
ACKAO20-20	249993	1385579	143	25	-50	270	Regional				
ACKAO20-21	249978	1385581	147	22	-50	270	Regional				
ACKAO20-22	249966	1385582	149	26	-50	270	Regional				
ACKAO20-23	249958	1385580	136	19	-50	270	Regional				
ACKAO20-24	249946	1385580	138	30	-50	270	Regional				
ACKAO20-25	249934	1385581	149	19	-50	270	Regional				
ACKAO20-26	249924	1385580	153	30	-50	270	Regional				
ACKAO20-27	249903	1385579	140	35	-50	270	Regional				
ACKAO20-28	249885	1385579	149	40	-50	270	Regional				
ACKAO20-29	249863	1385579	146	37	-50	270	Regional				
ACKAO20-30	249844	1385579	146	8	-50	270	Regional				
ACKAO20-31	249840	1385580	140	24	-50	270	Regional				
ACKAO20-32	249828	1385579	142	26	-50	270	Regional				
ACKAO20-33	250494	1385204	140	44	-50	270	Regional				
ACKAO20-34	250472	1385206	144	41	-50	270	Regional				
ACKAO20-35	250454	1385207	144	41	-50	270	Regional				
ACKAO20-36	250433	1385205	145	50	-50	270	Regional				
ACKAO20-37	250406	1385206	143	50	-50	270	Regional				
ACKAO20-38	250381	1385205	142	35	-50	270	Regional				
ACKAO20-39	250363	1385204	138	50	-50	270	Regional				
ACKAO20-40	250337	1385205	139	50	-50	270	Regional				
ACKAO20-41	250312	1385205	142	38	-50	270	Regional				
ACKAO20-42	250292	1385205	141	38	-50	270	Regional				
ACKAO20-43	250272	1385250	144	44	-50	270	Regional				
ACKAO20-44	250251	1385206	151	43	-50	270	Regional				
ACKAO20-45	251567	1384185	150	41	-50	270	Regional				
ACKAO20-46	251541	1384187	146	48	-50	270	Regional				
ACKAO20-47	251517	1384185	141	47	-50	270	Regional				
ACKAO20-48	251495	1384186	144	28	-50	270	Regional				
ACKAO20-49	251493	1384186	140	44	-50	270	Regional				
ACKAO20-50	251457	1384187	139	48	-50	270	Regional				

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACKAO20-51	251435	1384187	138	50	-50	270	Regional
ACKAO20-52	251410	1384188	149	48	-50	270	Regional
ACKAO20-53	251384	1384186	138	37	-50	270	Regional
ACKAO20-54	251772	1383614	177	23	-50	270	Regional
ACKAO20-55	251762	1383614	178	36	-50	270	Regional
ACKAO20-56	251740	1383614	181	36	-50	270	Regional
ACKAO20-57	251719	1383612	141	44	-50	270	Regional
ACKAO20-58	251697	1383612	140	31	-50	270	Regional
ACKAO20-59	251680	1383612	142	35	-50	270	Regional
ACKAO20-60	251664	1383612	138	33	-50	270	Regional
ACKAO20-61	251650	1383612	138	44	-50	270	Regional
ACKAO20-62	251627	1383612	140	34	-50	270	Regional
ACKAO20-63	251611	1383612	137	32	-50	270	Regional
ACKAO20-64	251595	1383611	141	35	-50	270	Regional
ACKAO20-65	251576	1383611	141	23	-50	270	Regional
ACKAO20-66	251566	1383611	141	13	-50	270	Regional
ACKAO20-67	251559	1383610	140	20	-50	270	Regional
ACKAO20-68	251547	1383611	139	26	-50	270	Regional
ACKAO20-69	251534	1383610	139	28	-50	270	Regional
ACKAO20-70	252364	1385600	164	50	-50	270	Regional
ACKAO20-71	252338	1385600	164	50	-50	270	Regional
ACKAO20-72	252312	1385601	166	39	-50	270	Regional
ACKAO20-73	252293	1385600	165	44	-50	270	Regional
ACKAO20-74	252272	1385602	164	32	-50	270	Regional
ACKAO20-75	252256	1385600	166	26	-50	270	Regional
ACKAO20-76	252240	1385601	166	50	-50	270	Regional
ACKAO20-77	252220	1385600	165	46	-50	270	Regional
ACKAO20-78	251994	1386000	162	50	-50	270	Regional
ACKAO20-79	251969	1386001	164	50	-50	270	Regional
ACKAO20-80	251946	1386001	164	50	-50	270	Regional
ACKAO20-81	251921	1386000	168	50	-50	270	Regional
ACKAO20-82	251895	1386000	171	50	-50	270	Regional
ACKAO20-83	251868	1386000	166	49	-50	270	Regional
ACKAO20-84	251843	1386001	169	50	-50	270	Regional
ACKAO20-85	251818	1386001	168	50	-50	270	Regional
ACKAO20-87	251768	1386000	163	50	-50	270	Regional
ACKAO20-88	251746	1385999	159	46	-50	270	Regional
ACKAO20-89	251720	1385999	160	40	-50	270	Regional
ACKAO20-90	251703	1386000	163	32	-50	270	Regional
ACKAO20-91	254752	1385398	141	38	-50	270	Regional
ACKAO20-86	251794	1385998	167	50	-50	270	Regional
ACKAO20-92	254733	1385397	143	34	-50	270	Regional
ACKAO20-93	254717	1385397	145	37	-50	270	Regional

	AC DRILL HOLE LOCATIONS										
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit				
ACKAO20-94	254697	1385397	141	40	-50	270	Regional				
ACKAO20-95	254676	1385397	139	40	-50	270	Regional				
ACKAO20-96	254657	1385397	137	35	-50	270	Regional				
ACKAO20-97	254641	1385397	140	37	-50	270	Regional				
ACKAO20-98	254622	1385398	137	36	-50	270	Regional				
ACKAO20-99	254604	1385398	134	30	-50	270	Regional				
ACKAO20-100	255181	1386002	145	48	-50	270	Regional				
ACKAO20-101	255156	1386002	148	50	-50	270	Regional				
ACKAO20-102	255131	1386002	152	50	-50	270	Regional				
ACKAO20-103	255106	1386002	149	50	-50	270	Regional				
ACKAO20-104	255082	1386001	148	50	-50	270	Regional				
ACKAO20-105	255055	1386002	145	50	-50	270	Regional				
ACKAO20-106	255031	1386002	149	48	-50	270	Regional				
ACKAO20-107	255005	1386004	147	50	-50	270	Regional				
ACKAO20-108	254981	1386002	150	47	-50	270	Regional				
ACKAO20-109	254959	1386003	153	50	-50	270	Regional				
ACKAO20-110	254929	1386001	148	50	-50	270	Regional				
ACKAO20-111	254906	1386002	145	50	-50	270	Regional				
ACKAO20-112	254880	1386003	146	50	-50	270	Regional				
ACKAO20-113	254855	1386002	153	50	-50	270	Regional				
ACKAO20-114	254830	1386002	149	50	-50	270	Regional				
ACKAO20-115	254805	1386002	149	50	-50	270	Regional				
ACKAO20-116	254780	1386002	150	50	-50	270	Regional				
ACKAO20-117	250547	1385801	139	42	-50	270	Regional				
ACKAO20-118	250525	1385801	144	40	-50	270	Regional				
ACKAO20-119	250502	1385800	144	26	-50	270	Regional				
ACKAO20-120	250486	1385801	145	24	-50	270	Regional				
ACKAO20-121	250480	1385801	148	22	-50	270	Regional				
ACKAO20-122	250471	1385799	139	27	-50	270	Regional				
ACKAO20-123	250455	1385802	142	30	-50	270	Regional				
ACKAO20-124	250439	1385801	144	27	-50	270	Regional				
ACKAO20-125	250427	1385802	145	23	-50	270	Regional				
ACKAO20-126	250415	1385801	149	23	-50	270	Regional				
ACKAO20-127	250402	1385802	147	18	-50	270	Regional				
ACKAO20-128	250395	1385802	149	23	-50	270	Regional				
ACKAO20-129	250383	1385801	149	26	-50	270	Regional				
ACKAO20-130	250366	1385800	140	36	-50	270	Regional				
ACKAO20-131	250349	1385800	151	36	-50	270	Regional				
ACKAO20-132	250329	1385800	143	30	-50	270	Regional				
ACKAO20-133	250317	1385800	147	32	-50	270	Regional				
ACKAO20-134	250300	1385801	147	28	-50	270	Regional				
ACKAO20-135	250287	1385801	148	38	-50	270	Regional				
ACKAO20-136	250268	1385802	151	40	-50	270	Regional				

	AC DRILL HOLE LOCATIONS										
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit				
ACKAO20-137	250247	1385801	160	44	-50	270	Regional				
ACKAO20-138	250224	1385800	155	36	-50	270	Regional				
ACKAN20-29	260501	1383703	159	60	-50	270	Regional				
ACKAN20-30	260477	1383702	158	60	-50	270	Regional				
ACKAN20-31	260447	1383701	165	60	-50	270	Regional				
ACKAN20-32	260417	1383703	170	60	-50	270	Regional				
ACKAN20-33	260387	1383704	174	60	-50	270	Regional				
ACKAN20-34	260356	1383702	177	60	-50	270	Regional				
ACKAN20-35	260329	1383684	173	60	-50	270	Regional				
ACKAN20-36	260301	1383672	163	60	-50	270	Regional				
ACKAN20-37	260266	1383704	171	34	-50	270	Regional				
ACKAN20-38	260246	1383700	171	44	-50	270	Regional				
ACKAN20-39	260226	1383703	160	60	-50	270	Regional				
ACKAN20-40	260197	1383705	162	60	-50	270	Regional				
ACKAN20-41	260165	1383705	167	60	-50	270	Regional				
ACKAN20-42	260135	1383704	165	60	-50	270	Regional				
ACKAN20-43	260420	1384300	183	60	-50	270	Regional				
ACKAN20-44	260390	1384300	177	60	-50	270	Regional				
ACKAN20-45	260358	1384301	167	60	-50	270	Regional				
ACKAN20-46	260327	1384302	168	60	-50	270	Regional				
ACKAN20-47	260296	1384300	167	51	-50	270	Regional				
ACKAN20-48	260272	1384301	167	60	-50	270	Regional				
ACKAN20-49	260238	1384300	167	60	-50	270	Regional				
ACKAN20-50	260212	1384301	167	60	-50	270	Regional				
ACKAN20-51	262465	1383700	167	60	-50	270	Regional				
ACKAN20-52	262435	1383701	168	60	-50	270	Regional				
ACKAN20-53	262405	1383700	159	60	-50	270	Regional				
ACKAN20-54	262374	1383700	155	60	-50	270	Regional				
ACKAN20-55	262345	1383700	161	60	-50	270	Regional				
ACKAN20-56	262315	1383701	155	60	-50	270	Regional				
ACKAN20-57	262285	1383701	154	60	-50	270	Regional				
ACKAN20-58	264057	1383517	184	44	-50	270	Regional				
ACKAN20-59	264036	1383517	189	26	-50	270	Regional				
ACKAN20-60	264026	1383516	185	58	-50	270	Regional				
ACKAN20-61	263994	1383517	188	50	-50	270	Regional				
ACKAN20-62	263968	1383517	194	60	-50	270	Regional				
ACKAN20-63	263942	1383518	193	54	-50	270	Regional				
ACKAN20-64	263910	1383515	195	48	-50	270	Regional				
ACKAN20-65	263888	1383519	180	48	-50	270	Regional				
ACKAN20-66	263861	1383518	177	60	-50	270	Regional				
ACKAN20-67	263883	1383517	178	57	-50	270	Regional				
ACKAN20-68	262220	1385286	205	60	-50	270	Regional				
ACKAN20-69	262190	1385285	205	60	-50	270	Regional				

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACKAN20-70	262164	1385285	205	60	-50	270	Regional
ACKAN20-71	262131	1385284	203	60	-50	270	Regional
ACKAN20-72	262100	1385285	205	60	-50	270	Regional
ACKAN20-73	262071	1385286	203	60	-50	270	Regional
ACKAN20-74	262041	1385285	211	60	-50	270	Regional
ACKAN20-75	261440	1385704	197	60	-50	270	Regional
ACKAN20-76	261410	1385704	199	60	-50	270	Regional
ACKAN20-77	261382	1385704	196	60	-50	270	Regional
ACKAN20-78	261349	1385704	197	60	-50	270	Regional
ACKAN20-79	261319	1385704	187	60	-50	270	Regional
ACKAN20-80	261290	1385704	198	60	-50	270	Regional
ACKAN20-81	261260	1385704	201	60	-50	270	Regional
ACKAN20-82	261583	1385899	200	60	-50	270	Regional
ACKAN20-83	261551	1385900	198	60	-50	270	Regional
ACKAN20-84	261522	1385901	201	60	-50	270	Regional
ACKAN20-85	261493	1385902	202	60	-50	270	Regional
ACKAN20-86	261463	1385903	201	60	-50	270	Regional
ACKAN20-87	261430	1385902	202	60	-50	270	Regional
ACKAN20-88	261402	1385902	201	60	-50	270	Regional
ACKAN20-89	261373	1385902	188	60	-50	270	Regional
ACKAN20-90	261730	1385836	199	60	-50	270	Regional
ACKAN20-91	261704	1385837	203	60	-50	270	Regional
ACKAN20-92	261680	1385834	201	60	-50	270	Regional
ACKAN20-93	261647	1385831	200	60	-50	270	Regional
ACKAN20-94	261875	1386290	183	60	-50	270	Regional
ACKAN20-95	261845	1386290	183	60	-50	270	Regional
ACKAN20-96	261810	1386288	186	60	-50	270	Regional
ACKAN20-97	261788	1386290	176	60	-50	270	Regional
ACKAN20-98	261752	1386289	176	60	-50	270	Regional
ACKAN20-99	261722	1386289	180	60	-50	270	Regional
ACKAN20-100	261781	1386499	173	60	-50	270	Regional
ACKAN20-101	261754	1386498	173	60	-50	270	Regional
ACKAN20-102	261724	1386499	184	60	-50	270	Regional
ACKAN20-103	261900	1386500	192	60	-50	270	Regional
ACKAN20-104	261873	1386478	197	60	-50	270	Regional
ACKAN20-105	261843	1386491	207	60	-50	270	Regional
ACKAN20-106	261800	1386500	186	60	-50	270	Regional
ACKAN20-107	262412	1386701	181	60	-50	270	Regional
ACKAN20-108	262382	1386701	180	60	-50	270	Regional
ACKAN20-109	262349	1386701	177	60	-50	270	Regional
ACKAN20-110	262320	1386700	183	60	-50	270	Regional
ACKAN20-111	262291	1386700	183	60	-50	270	Regional
ACKAN20-112	262260	1386698	184	60	-50	270	Regional

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACKAN20-113	262230	1386696	184	60	-50	270	Regional
ACKAN20-114	262200	1386698	184	60	-50	270	Regional
ACKAN20-115	262955	1387300	170	60	-50	270	Regional
ACKAN20-116	262925	1387301	166	60	-50	270	Regional
ACKAN20-117	262897	1387302	166	60	-50	270	Regional
ACKAN20-118	262865	1387301	162	60	-50	270	Regional
ACKAN20-119	262833	1387301	161	60	-50	270	Regional
ACKAN20-120	262803	1387303	160	60	-50	270	Regional
ACKAN20-121	262775	1387300	166	60	-50	270	Regional
ACKAN20-122	264279	1386900	163	60	-50	270	Regional
ACKAN20-123	264219	1386900	164	60	-50	270	Regional
ACKAN20-124	264190	1386900	163	60	-50	270	Regional
ACKAN20-125	264159	1386900	167	60	-50	270	Regional
ACKAN20-126	264128	1386901	173	60	-50	270	Regional
ACKAN20-127	264100	1386810	170	60	-50	270	Regional
ACKAN20-128	264065	1386805	173	60	-50	270	Regional
ACKAN20-129	264034	1386808	182	60	-50	270	Regional
ACKAN20-130	259878	1386293	190	60	-50	270	Regional
ACKAN20-131	259858	1386293	192	60	-50	270	Regional
ACKAN20-132	259834	1386293	191	60	-50	270	Regional
ACKAN20-133	259808	1386295	191	60	-50	270	Regional
ACKAN20-134	259780	1386294	191	60	-50	270	Regional
ACKAN20-135	259758	1386295	189	60	-50	270	Regional
ACKAN20-136	259727	1386295	192	60	-50	270	Regional
ACKAN20-137	259702	1386293	198	60	-50	270	Regional
ACKAN20-138	259683	1386294	187	60	-50	270	Regional
ACKAN20-139	259659	1386295	191	60	-50	270	Regional
ACKAN20-140	259637	1386293	189	60	-50	270	Regional
ACKAN20-141	259920	1386100	188	60	-50	270	Regional
ACKAN20-142	259893	1386101	189	60	-50	270	Regional
ACKAN20-143	259868	1386101	186	60	-50	270	Regional
ACKAN20-144	259843	1386102	192	60	-50	270	Regional
ACKAN20-145	259818	1386101	188	60	-50	270	Regional
ACKAN20-146	259793	1386101	190	60	-50	270	Regional
ACKAN20-147	259770	1386101	187	60	-50	270	Regional
ACKAN20-148	259744	1386100	187	60	-50	270	Regional
ACKAN20-149	259718	1386100	174	60	-50	270	Regional
ACKAN20-150	259694	1386101	189	60	-50	270	Regional
ACKAN20-151	259667	1386100	188	60	-50	270	Regional
ACKAN20-152	259647	1386102	185	58	-50	270	Regional
ACKAN20-153	259623	1386101	186	60	-50	270	Regional
ACKAN20-154	259593	1386101	187	60	-50	270	Regional
ACKAN20-155	259568	1386101	188	60	-50	270	Regional

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACKAN20-156	259538	1386101	189	60	-50	270	Regional
ACKAN20-157	259513	1386103	189	60	-50	270	Regional
ACKAN20-158	259483	1386103	193	60	-50	270	Regional
ACKAN20-159	259455	1386103	184	60	-50	270	Regional
ACKAN20-160	259425	1386101	187	60	-50	270	Regional
ACKAN20-161	259606	1386286	194	60	-50	270	Regional
ACKAN20-162	260331	1386293	196	60	-50	270	Regional
ACKAN20-163	260311	1386293	196	60	-50	270	Regional
ACKAN20-164	260385	1386294	192	60	-50	270	Regional
ACKAN20-165	260262	1386296	188	60	-50	270	Regional
ACKAN20-166	260232	1386296	193	60	-50	270	Regional
ACKAN20-167	260207	1386296	196	60	-50	270	Regional
ACKAN20-168	260182	1386293	188	60	-50	270	Regional
ACKAN20-169	260156	1386297	187	60	-50	270	Regional
ACKAN20-170	260134	1386296	180	60	-50	270	Regional
ACKAN20-171	260108	1386295	181	60	-50	270	Regional
ACKAN20-172	260080	1386295	193	60	-50	270	Regional
ACKAN20-173	260060	1386294	186	60	-50	270	Regional
ACKAN20-174	260041	1386298	168	60	-50	270	Regional
ACKAN20-175	260008	1386292	182	60	-50	270	Regional
ACKAN20-176	259981	1386296	193	60	-50	270	Regional
ACKAN20-177	259957	1386295	192	60	-50	270	Regional
ACKAN20-178	259934	1386292	192	60	-50	270	Regional
ACKAN20-179	259908	1386295	181	60	-50	270	Regional
ACKAN20-180	258533	1385518	166	50	-50	270	Regional
ACKAN20-181	258511	1385518	175	50	-50	270	Regional
ACKAN20-182	258486	1385516	173	50	-50	270	Regional
ACKAN20-183	258461	1385516	176	50	-50	270	Regional
ACKAN20-184	258437	1385516	173	50	-50	270	Regional
ACKAN20-185	258416	1385516	179	50	-50	270	Regional
ACKAN20-186	258389	1385516	172	50	-50	270	Regional
ACKAN20-187	258362	1385516	178	50	-50	270	Regional
ACKAN20-188	258336	1385516	179	50	-50	270	Regional
ACKAN20-189	258312	1385516	173	50	-50	270	Regional
ACKAN20-190	258286	1385518	165	50	-50	270	Regional
ACKAN20-191	258261	1385518	170	50	-50	270	Regional
ACKAN20-192	258237	1385516	158	50	-50	270	Regional
ACKAN20-193	258214	1385516	163	50	-50	270	Regional
ACKAN20-194	258191	1385516	164	50	-50	270	Regional
ACKAN20-195	258164	1385516	170	50	-50	270	Regional
ACKAN20-196	258137	1385518	180	50	-50	270	Regional
ACKAN20-197	258112	1385517	178	50	-50	270	Regional
ACKAN20-198	258086	1385516	169	50	-50	270	Regional

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACKAN20-199	259582	1385702	193	50	-50	270	Regional
ACKAN20-200	259557	1385702	197	25	-50	270	Regional
ACKAN20-201	259544	1385701	188	50	-50	270	Regional
ACKAN20-202	259516	1385701	188	50	-50	270	Regional
ACKAN20-203	259495	1385700	190	50	-50	270	Regional
ACKAN20-204	259469	1385701	189	50	-50	270	Regional
ACKAN20-205	259444	1385698	187	50	-50	270	Regional
ACKAN20-206	259420	1385698	189	50	-50	270	Regional
ACKAN20-207	259394	1385699	195	50	-50	270	Regional
ACKAN20-208	259369	1395698	199	50	-50	270	Regional
ACKAN20-209	259344	1385697	195	50	-50	270	Regional
ACKAN20-210	259318	1385698	195	50	-50	270	Regional
ACKAN20-211	258564	1386097	162	50	-50	270	Regional
ACKAN20-212	258539	1386097	161	50	-50	270	Regional
ACKAN20-213	258514	1386097	161	50	-50	270	Regional
ACKAN20-214	258489	1386097	159	50	-50	270	Regional
ACKAN20-215	258464	1386097	159	50	-50	270	Regional
ACKAN20-216	258437	1386096	156	50	-50	270	Regional
ACKAN20-217	258412	1386095	161	50	-50	270	Regional
ACKAN20-218	258332	1386095	163	50	-50	270	Regional
ACKAN20-219	258363	1386095	161	50	-50	270	Regional
ACKAN20-220	258339	1386095	155	50	-50	270	Regional
ACKAN20-221	258312	1386096	158	50	-50	270	Regional
ACKAN20-222	258283	1386096	154	50	-50	270	Regional
ACKAN20-223	258263	1386096	152	50	-50	270	Regional
ACKAN20-224	258239	1386097	148	50	-50	270	Regional
ACKAN20-225	258214	1386097	148	50	-50	270	Regional
ACKAN20-226	258189	1386097	150	50	-50	270	Regional
ACKAN20-227	258163	1386097	174	50	-50	270	Regional
ACKAN20-228	258139	1386097	174	50	-50	270	Regional
ACKAN20-229	258114	1386097	173	50	-50	270	Regional
ACKAN20-230	258097	1386096	165	50	-50	270	Regional
ACKAN20-231	258065	1386096	162	50	-50	270	Regional
ACKAN20-232	258037	1386095	157	50	-50	270	Regional
ACKAN20-233	258014	1386094	158	50	-50	270	Regional
ACKAN20-234	257987	1386095	153	50	-50	270	Regional
ACKAN20-235	257964	1386096	159	50	-50	270	Regional
ACKAN20-236	257938	1386097	159	50	-50	270	Regional
ACKAN20-237	257914	1386096	163	50	-50	270	Regional
ACKAN20-238	257839	1386097	160	50	-50	270	Regional
ACKAN20-239	257864	1386097	157	50	-50	270	Regional
ACKAN20-240	257839	1386097	159	50	-50	270	Regional
ACKAN20-241	260455	1386499	185	50	-50	270	Regional

		AC DRI	LL HOLE LO	DCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACKAN20-242	260430	1386500	185	50	-50	270	Regional
ACKAN20-243	260405	1386500	185	50	-50	270	Regional
ACKAN20-244	260379	1386500	184	50	-50	270	Regional
ACKAN20-245	260354	1386500	184	50	-50	270	Regional
ACKAN20-246	260329	1386501	184	50	-50	270	Regional
ACKAN20-247	260305	1386501	185	50	-50	270	Regional
ACKAN20-248	260280	1386501	183	50	-50	270	Regional
ACKAN20-249	257723	1385108	164	50	-50	270	Regional
ACKAN20-250	257698	1385108	162	50	-50	270	Regional
ACKAN20-251	257673	1385109	160	50	-50	270	Regional
ACKAN20-252	257648	1385108	162	50	-50	270	Regional
ACKAN20-253	257623	1385108	162	50	-50	270	Regional
ACKAN20-254	257598	1385108	161	50	-50	270	Regional
ACKAN20-255	257573	1385108	162	50	-50	270	Regional
ACKAN20-256	257474	1385108	161	50	-50	270	Regional
ACKAN20-257	257548	1385108	163	50	-50	270	Regional
ACKAN20-258	257526	1385108	160	50	-50	270	Regional
ACKAN20-259	257502	1385107	163	50	-50	270	Regional
ACKAN20-260	257448	1385108	162	50	-50	270	Regional
ACKAN20-261	257428	1385108	162	50	-50	270	Regional
ACKAN20-262	257397	1385108	163	50	-50	270	Regional
ACKAN20-263	257372	1385108	163	50	-50	270	Regional
ACKAN20-264	256526	1385297	157	50	-50	270	Regional
ACKAN20-265	256503	1385297	156	50	-50	270	Regional
ACKAN20-266	256477	1385298	155	50	-50	270	Regional
ACKAN20-267	256451	1385297	158	50	-50	270	Regional
ACKAN20-268	256427	1385298	159	50	-50	270	Regional
ACKAN20-269	256401	1385297	162	50	-50	270	Regional
ACKAN20-270	256378	1385296	161	50	-50	270	Regional
ACKAN20-271	256351	1385296	160	50	-50	270	Regional
ACKAN20-272	256329	1385296	159	50	-50	270	Regional
ACKAN20-273	256302	1385296	158	50	-50	270	Regional
ACKAN20-274	256276	1385297	157	50	-50	270	Regional
ACKAN20-275	256251	1385296	156	50	-50	270	Regional
ACKAN20-276	256227	1385295	153	50	-50	270	Regional
ACKAN20-277	256202	1385297	149	50	-50	270	Regional
ACKAN20-278	256177	1385296	146	50	-50	270	Regional
ACKAN20-279	256153	1385296	140	50	-50	270	Regional
ACKAN20-280	256126	1385296	141	50	-50	270	Regional
ACKAN20-281	256102	1385298	140	50	-50	270	Regional
ACKAN20-282	256077	1385297	138	50	-50	270	Regional
ACKAN20-283	256051	1385296	143	50	-50	270	Regional
ACKAN20-284	256030	1385297	136	46	-50	270	Regional

		AC DRI	LL HOLE LO	OCATIONS			
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
ACKAN20-285	256005	1385299	146	46	-50	270	Regional
ACKAN20-286	255980	1385298	151	42	-50	270	Regional
ACKAN20-287	255957	1385297	147	38	-50	270	Regional
ACKAN20-288	256354	1385693	149	50	-50	270	Regional
ACKAN20-289	256327	1385695	156	45	-50	270	Regional
ACKAN20-290	256306	1385693	150	42	-50	270	Regional
ACKAN20-291	256287	1385693	148	50	-50	270	Regional
ACKAN20-292	256259	1385691	146	50	-50	270	Regional
ACKAN20-293	256233	1385692	144	42	-50	270	Regional
ACKAN20-294	256213	1385691	141	50	-50	270	Regional
ACKAN20-295	256186	1385691	141	39	-50	270	Regional
ACKAN20-296	256170	1385691	142	30	-50	270	Regional
ACKAN20-297	256155	1385691	139	30	-50	270	Regional
ACKAN20-298	256140	1385692	141	30	-50	270	Regional
ACKAN20-299	256122	1385693	144	40	-50	270	Regional
ACKAN20-300	256102	1385693	146	31	-50	270	Regional
ACKAN20-301	256089	1385691	148	33	-50	270	Regional
ACKAN20-302	256070	1385691	145	38	-50	270	Regional
ACKAN20-303	256050	1385691	140	36	-50	270	Regional
ACKAN20-304	256033	1385691	137	36	-50	270	Regional
ACKAN20-305	256017	1385691	135	36	-50	270	Regional
ACKAN20-306	255998	1385691	130	36	-50	270	Regional
ACKAN20-307	255981	1385690	128	30	-50	270	Regional
ACKAN20-308	255960	1385691	132	33	-50	270	Regional
ACKAN20-309	255947	1385692	134	32	-50	270	Regional
ACKAN20-310	255931	1385692	139	32	-50	270	Regional
ACKAN20-311	255915	1385691	142	38	-50	270	Regional
ACKAN20-312	255896	1385690	141	33	-50	270	Regional
ACKAN20-313	255878	1385690	140	34	-50	270	Regional
ACKAN20-314	255863	1385691	137	32	-50	270	Regional
ACKAN20-315	255846	1385690	136	32	-50	270	Regional
ACKAN20-316	255830	1385689	140	32	-50	270	Regional
ACKAN20-317	255816	1385692	131	35	-50	270	Regional
ACKAN20-318	255797	1385692	13	31	-50	270	Regional
ACKAN20-319	255784	1385691	128	24	-50	270	Regional

APPENDIX 3.RC DRILL HOLE COLLAR DETAILS

		RC DI	RILL HOLF	E COLLAR DET	AILS		
Hole	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
RCMan-19-01	263513	1380499	185.43	75	-50	270	Mankouké
RCMan-19-02	263581	1380499	187.15	120	-50	270	Mankouké
RCMan-19-03	263646	1380500	188.60	175	-50	270	Mankouké
RCMAN20-04	262700	1375750	175	125	-50	270	Mankouké
RCMAN20-05	262651	1375750	174	80	-50	270	Mankouké
RCMAN20-06	262669	1375651	175	129	-50	270	Mankouké
RCMAN20-07	262620	1375651	174	81	-50	270	Mankouké
RCMAN20-08	262625	1375549	173	83	-50	270	Mankouké
RCMAN20-09	262578	1375547	168	77	-50	270	Mankouké
RCMAN20-10	262727	1375950	175	135	-50	270	Mankouké
RCMAN20-11	262681	1375950	175	87	-50	270	Mankouké
RCMAN20-12	262750	1376050	175	125	-50	270	Mankouké
RCMAN20-13	262698	1376050	175	80	-50	270	Mankouké
RCMAN20-14	262760	1376150	173	125	-50	270	Mankouké
RCMAN20-15	262711	1376153	174	80	-50	270	Mankouké

APPENDIX 4. DIAMOND DRILL HOLE AND RC-DD COLLAR DETAILS

D	IAMONI	D DRILL	HOLE ANI	D RC-DD COLI	LAR DE	TAILS	
Hole ID	East	North	Elevation	Total Depth (m)	Dip	Azimuth	Permit
DDHMan-19-01	263521	1380494	185.56	99	-50	270	Mankouké
DDHMan-19-02	263569	1380494	186.82	125	-50	270	Mankouké
DDHMan-19-03	263535	1380544	186.17	90	-50	270	Mankouké
DDHMan-19-04	263582	1380545	187.43	132	-50	270	Mankouké
DDHMan-19-05	263536	1380445	182.85	80	-50	270	Mankouké
DDHMan-19-06	263590	1380445	185.69	130	-50	270	Mankouké
DDHMan-19-07	263488	1380495	184.50	55	-50	270	Mankouké
DDHMan-19-08	263562	1380600	190.25	135	-50	270	Mankouké
DDHMan-19-09	263628	1380546	188.55	135	-50	270	Mankouké
DDHMan-19-10	263619	1380494	188.01	135	-50	270	Mankouké
DDHMan-19-11	263451	1379899	153.23	87	-50	270	Mankouké
DDHMAN-19-12	263595	1380599	191.06	120	-50	270	Mankouké
DDHMAN-19-13	263537	1380600	189.61	94	-50	270	Mankouké
DDHMAN-19-14	263539	1380649	187.35	102	-50	270	Mankouké
DDHMAN-19-15	263558	1380750	183.74	123	-50	270	Mankouké
DDHMAN-19-16	263550	1380792	182.73	110	-50	270	Mankouké
DDHMAN-19-17	263559	1380700	184.90	145	-50	270	Mankouké
DDHMAN-19-18	263586	1380650	185.85	120	-50	270	Mankouké
DDHMAN-19-19	263492	1380651	188.43	100	-50	270	Mankouké
DDMAN20-20	262727	1375849	177	187	-50	270	Mankouké
DDMAN20-21	262778	1375849	173	236.9	-50	270	Mankouké
RCDDMAN20-22	262903	1375849	177	256.4	-60	270	Mankouké
RCDDMAN20-23	262749	1375751	173	165.2	-60	270	Mankouké
DDMAN20-24	262765	1376002	172	161.5	-50	270	Mankouké
DDMAN20-25	262810	1376001	175	143.7	-50	270	Mankouké
DDMAN20-26	262717	1375900	174	130.2	-50	270	Mankouké
DDMAN20-27	262705	1375799	179	151.2	-50	270	Mankouké
DDMAN20-28	262828	1375849	174	196.2	-50	270	Mankouké
DDMAN20-29	262767	1375899	176	150.2	-50	270	Mankouké
DDMAN20-30	262757	1375799	179	221.7	-50	270	Mankouké
DDMAN20-31	262839	1376001	175	203.7	-50	270	Mankouké
DDMAN20-32	262540	1375751	174	191.7	-50	90	Mankouké
DDMAN20-33	262817	1375900	176	239.8	-50	270	Mankouké
DDMAN20-34	262776	1375950	174	201.4	-50	270	Mankouké
DDMAN20-35	262788	1376100	170	157	-50	270	Mankouké
DDMAN20-36	262839	1376101	173	176.7	-50	270	Mankouké
DDMAN20-37	262886	1376101	176	251	-50	270	Mankouké
DDMAN20-38	262809	1376149	172	135	-50	270	Mankouké
DDMAN20-39	262859	1376150	171	173.8	-50	270	Mankouké
DDMAN20-40	262645	1375750	174	125	-50	90	Mankouké
DDMAN20-41	262703	1375751	175	203.7	-50	270	Mankouké
DDMAN20-42	262879	1376199	169	204.4	-50	270	Mankouké

DDMAN20-43	262781	1376200	168	81.4	-50	270	Mankouké
DDMAN20-44	262666	1375700	179	145	-50	270	Mankouké
DDMAN20-45	262831	1376200	168	82.5	-50	270	Mankouké
DDMAN20-46	262875	1376400	171	96.2	-50	270	Mankouké
DDMAN20-47	262720	1375698	179	181	-50	270	Mankouké
DDMAN20-48	262712	1376000	172	156	-50	90	Mankouké
DDMAN20-49	262720	1375650	175	130	-50	270	Mankouké
DDMAN20-50	262687	1376001	171	206.6	-63	90	Mankouké
DDMAN20-51	262674	1375649	173	131.5	-50	270	Mankouké
		T ()) 10	10 D.C	DD 1 1			

*DDHMAN-19-12 TO DDHMAN-19-19 are RC-DD holes

APPENDIX 5.SIGNIFICANT INTERSECTIONS IN AC DRILLING

Permit	Hole	From	To (m)	Drilled Interval	Au
IZ 1' 1 NT 41		(m)		<u>(m)</u>	(ppm)
Kandiole North	ACKaN-19-06	2	4	2	0.68
Kandiole North	ACKaN-19-06	8	10	2	1.05
Kandiole North	ACKaN-19-06	16	18	2	0.71
Kandiole North	ACKaN-19-06	30	32	2	0.72
Mankouké	ACMan-18-04	8	12	4	0.62
Mankouké	ACMan-18-05	8	14	6	0.54
Mankouké	ACMan-18-06	0	2	2	0.63
Mankouké	ACMan-18-08	0	8	8	3.06
	Including	2	6	4	4.92
	Including	4	6	2	7.50
Mankouké	ACMan-18-09	6	8	2	1.53
Mankouké	ACMan-18-09	12	16	4	2.71
	Including	14	16	2	3.69
Mankouké	ACMan-18-10	8	10	2	0.78
Mankouké	ACMan-18-10	14	16	2	0.58
Mankouké	ACMan-18-11	10	12	2	0.76
Mankouké	ACMan-18-12	12	14	2	0.59
Mankouké	ACMan-18-12	20	28	8	0.58
Mankouké	ACMan-18-12	32	38	6	1.22
	Including	36	38	2	2.03
Mankouké	ACMan-18-14	12	14	2	0.59
Mankouké	ACMan-18-16	8	14	6	0.72
Mankouké	ACMan-18-17	6	10	4	0.64
Mankouké	ACMan-18-18	4	6	2	5.10
Mankouké	ACMan-18-29	10	12	2	0.55
Mankouké	ACMan-18-41	4	6	2	0.94
Mankouké	ACMan-18-54	8	10	2	7.99
Mankouké	ACMan-18-80	0	2	2	0.63
Mankouké	ACMan-18-81	0	14	14	5.94
Wantouxe	Including	2	6	4	3.65
	Including	10	14	4	14.89
	Including	10	14	2	26.70
Mankouké	ACMan-18-82	10	24	14	8.68
WIAIIKOUKC	Including	10	24	8	14.21
	Including	12	20	4	24.88
	Ŭ		18	2	
Montrouted	Including	16		2	41.50
Mankouké Mankouké	ACMan-18-82	30	32		0.61
Mankouké	ACMan-18-83	0	2	2	0.81
Mankouké	ACMan-18-83	26	44	18	8.47
	Including	28	30	2	5.32
	Including Including	34 36	40 40	<u>6</u> 4	22.15 29.00

Permit	Hole	From	To (m)	Drilled Interval	Au
Permit	поте	(m)	10 (m)	(m)	(ppm)
Mankouké	ACMan-18-84	0	14	14	0.82
Mankouké	ACMan-18-84	30	32	2	0.55
Mankouké	ACMan-18-84	42	45	3	8.17
	Including	44	45	1	20.80
Mankouké	ACMan-18-85	0	2	2	0.56
Mankouké	ACMan-19-02	0	4	4	0.94
Mankouké	ACMan-19-03	4	12	8	1.12
Mankouké	ACMan-19-04	12	18	6	0.72
Mankouké	ACMan-19-04	24	26	2	2.15
Mankouké	ACMan-19-05	40	54	14	1.40
	Including	40	42	2	3.98
	Including	50	52	2	2.50
Mankouké	ACMan-19-06	44	54	10	2.63
	Including	46	52	6	3.25
Mankouké	ACMan-19-06	58	60	2	0.96
Mankouké	ACMan-19-07	58	60	2	1.06
Mankouké	ACMan-19-16	0	4	4	0.82
Mankouké	ACMan-19-17	0	8	8	2.26
	Including	2	6	4	3.35
Mankouké	ACMan-19-18	4	12	8	1.18
	Including	8	10	2	2.28
Mankouké	ACMan-19-20	42	46	4	1.05
Mankouké	ACMan-19-20	50	54	4	0.72
Mankouké	ACMan-19-21	54	60	6	6.39
Mankouké	ACMan-19-22	6	8	2	0.79
Mankouké	ACMan-19-22	18	20	2	0.54
Mankouké	ACMan-19-37	12	14	2	16.00
Mankouké	ACMan-19-47	30	32	2	0.56
Mankouké	ACMan-19-48	12	14	2	0.62
Mankouké	ACMan-19-49	16	18	2	0.55
Mankouké	ACMan-19-49	20	22	2	0.88
Mankouké	ACMan-19-51	2	4	2	1.92
Mankouké	ACMan-19-51	10	16	6	1.46
	Including	12	14	2	3.08
Mankouké	ACMan-19-51	26	28	2	1.34
Mankouké	ACMan-19-74	34	36	2	0.51
Mankouké	ACMan-19-84	30	40	10	1.24
	Including	34	38	4	2.22
Mankouké	ACMan-19-84	46	48	2	0.53
Mankouké	ACMan-19-85	38	44	6	2.44
Mankouké	ACMan-19-86	12	14	2	3.10
Mankouké	ACMan-19-86	26	30	4	4.29
*	Including	26	28	2	5.11

Downsid	Hele	From	T ₂ (m)	Drilled Interval	Au
Permit	Hole	(m)	To (m)	(m)	(ppm)
Mankouké	ACMan-19-88	14	16	2	3.75
Mankouké	ACMan-19-89	42	44	2	0.79
Mankouké	ACMan-19-90	16	18	2	2.18
Mankouké	ACMan-19-90	48	50	2	0.52
Mankouké	ACMan-19-91	14	22	8	2.76
	Including	16	18	2	8.74
Mankouké	ACMan-19-92	44	50	6	5.11
	Including	44	48	4	7.11
	Including	44	46	2	9.57
Mankouké	ACMan-19-93	18	20	2	8.84
Mankouké	ACMan-19-93	24	32	8	7.59
	Including	24	26	2	28.30
Mankouké	ACMan-19-94	28	30	2	1.31
Mankouké	ACMan-19-96	6	10	4	1.42
	Including	8	10	2	2.08
Mankouké	ACMan-19-96	16	26	10	3.66
	Including	24	26	2	7.87
Mankouké	ACMan-19-97	10	12	2	0.76
Mankouké	ACMan-19-97	20	26	6	3.42
	Including	20	24	4	4.78
	Including	20	22	2	5.72
Mankouké	ACMan-19-98	6	10	4	5.97
	Including	8	10	2	11.00
Mankouké	ACMan-19-125	2	4	2	1.07
Mankouké	ACMan-19-155	18	20	2	2.15
Mankouké	ACMan-19-163	36	42	6	1.24
	Including	40	42	2	2.49
Mankouké	ACMan-19-165	6	10	4	0.91
Mankouké	ACMan-19-165	20	22	2	2.37
Mankouké	ACMan-19-166	6	24	18	1.40
	Including	6	8	2	3.12
Mankouké	ACMan-19-166	30	34	4	8.14
	Including	30	32	2	12.50
Mankouké	ACMan-19-166	44	50	6	6.13
	Including	46	50	4	6.70
Mankouké	ACMan-19-167	4	20	16	4.50
	Including	6	10	4	13.14
	Including	6	8	2	23.00
	Including	16	18	2	5.40
Mankouké	ACMan-19-167	24	50	26	5.86
	Including	24	48	24	6.26
	Including	28	30	2	10.20
	Including	34	44	10	9.44

Permit	Hole	From	To (m)	Drilled Interval	Au
		(m)	10 (m)	(m)	(ppm)
Mankouké	ACMan-19-168	4	14	10	3.00
	Including	10	12	2	10.60
Mankouké	ACMan-19-168	20	50	30	3.71
	Including	26	36	10	4.80
	Including	26	32	6	6.73
	Including	40	50	10	5.53
	Including	46	50	4	9.19
Mankouké	ACMan-19-169	0	2	2	0.54
Mankouké	ACMan-19-169	8	16	8	1.34
	Including	12	14	2	3.18
Mankouké	ACMan-19-169	38	50	12	3.23
	Including	38	44	6	4.69
	Including	38	42	4	5.92
Mankouké	ACMan-19-170	10	36	26	2.76
	Including	10	18	8	3.26
	Including	10	12	2	6.76
	Including	22	26	4	8.74
Mankouké	ACMan-19-171	6	8	2	0.64
Mankouké	ACMan-19-181	4	6	2	1.31
Mankouké	ACMan-19-189	26	28	2	1.01
Mankouké	ACMan-19-196	4	6	2	1.59
Mankouké	ACMan-19-200	22	24	2	2.10
Mankouké	ACMan-19-217	6	12	6	1.00
Mankouké	ACMan-19-217	16	18	2	0.99
Mankouké	ACMan-19-229	24	26	2	0.65
Mankouké	ACMan-19-242	4	6	2	0.59
Mankouké	ACMan-19-243	24	26	2	0.67
Mankouké	ACMan-19-244	18	20	2	0.54
Mankouké	ACMan-19-244	24	26	2	1.75
Mankouké	ACMan-19-248	32	34	2	1.01
Mankouké	ACMan-19-249	32	36	4	1.63
Mankouké	ACMan-19-256	46	48	2	1.63
Mankouké	ACMan-19-257	20	24	4	1.19
Mankouké	ACMan-19-258	34	38	4	2.95
Mankouké	ACMan-19-260	26	28	2	2.92
Mankouké	ACMan-19-266	0	2	2	0.65
Mankouké	ACMan-19-270	0	6	6	0.61
Mankouké	ACMan-19-271	0	2	2	0.61
Moussala	ACMou-18-01	2	4	2	0.50
Moussala	ACMou-18-01	14	20	6	0.70
Moussala	ACMou-18-01	24	30	6	1.62
	Including	26	28	2	2.74
Moussala	ACMou-18-02	16	24	8	4.98

Permit	Hole	From (m)	To (m)	Drilled Interval (m)	Au (ppm)	
	Including	16	18	2	2.53	
	Including	22	24	2	16.60	
Moussala	ACMou-18-02	32	36	4	2.75	
	Including	34	36	2	4.81	
Moussala	ACMou-18-17	2	4	2	35.50	
Moussala	ACMou-19-01	0	2	2	1.33	
Moussala	ACMou-19-03	12	16	4	0.81	
Moussala	ACMou-19-03	38	40	2	0.54	
Moussala	ACMou-19-08	26	28	2	0.79	
Moussala	ACMou-19-10	6	8	2	0.52	
Moussala	ACMou-19-10	38	44	6	3.82	
	Including	42	44	2	8.46	
Moussala	ACMou-19-55	2	4	2	0.61	
Moussala	ACMou-19-61	0	2	2	1.96	
Niala	ACNia-19-04	20	22	2	0.64	

Note: this table includes mineralised intercepts with a grade of at least 0.5 g/t Au and a drilled thickness of at least 1 m, allowing a maximum of 2 m of waste within the intercept. Higher grade intercepts within the wider drilled interval were calculated with a minimum grade of 2 g/t Au and 5 g/t Au

SI	GNIFICANT INTER	RSECTI	ONS IN	N AC DRILLING (2020)	
Permit	Hole	From	То	Drilled Interval (m)	Au (ppm)
Mankouké	ACMAN20-287	4.0	21.0	17.0	1.39
	Including	6.0	10.0	4.0	3.19
	Including	6.0	7.0	1.0	5.42
	Including	18.0	19.0	1.0	2.59
Mankouké	ACMAN20-287	26.0	36.0	10.0	0.79
	Including	30.0	31.0	1.0	2.32
Mankouké	ACMAN20-287	41.0	50.0	9.0	1.31
	Including	41.0	42.0	1.0	2.83
	Including	43.0	45.0	2.0	2.37
Mankouké	ACMAN20-288	2.0	50.0	48.0	3.71
	Including	10.0	12.0	2.0	2.14
	Including	18.0	19.0	1.0	5.62
	Including	27.0	50.0	23.0	6.61
	Including	30.0	40.0	10.0	8.15
	Including	44.0	49.0	5.0	10.49
Mankouké	ACMAN20-289	0.0	49.0	49.0	2.41
	Including	8.0	13.0	5.0	10.08

S	IGNIFICANT INTE	RSECTI	ONS IN	AC DRILLING (2020)	
Permit	Hole	From	То	Drilled Interval (m)	Au (ppm)
	Including	8.0	11.0	3.0	15.11
	Including	17.0	30.0	13.0	2.10
	Including	33.0	34.0	1.0	2.03
	Including	39.0	45.0	6.0	2.21
Mankouké	ACMAN20-290	0.0	15.0	15.0	3.63
	Including	10.0	14.0	4.0	10.58
	Including	12.0	13.0	1.0	34.60
Mankouké	ACMAN20-290	26.0	29.0	3.0	1.91
	Including	26.0	28.0	2.0	2.57
Mankouké	ACMAN20-290	37.0	50.0	13.0	1.56
	Including	37.0	38.0	1.0	3.45
	Including	42.0	46.0	4.0	2.15
Mankouké	ACMAN20-291	0.0	1.0	1.0	0.74
Mankouké	ACMAN20-291	6.0	11.0	5.0	1.98
	Including	7.0	10.0	3.0	2.81
Mankouké	ACMAN20-292	6.0	7.0	1.0	1.16
Mankouké	ACMAN20-292	12.0	13.0	1.0	0.69
Mankouké	ACMAN20-295	43.0	49.0	6.0	0.77
Mankouké	ACMAN20-296	8.0	11.0	3.0	0.59
Mankouké	ACMAN20-296	14.0	18.0	4.0	2.82
	Including	14.0	16.0	2.0	4.35
Mankouké	ACMAN20-296	23.0	35.0	12.0	1.46
	Including	28.0	33.0	5.0	2.64
Mankouké	ACMAN20-296	38.0	44.0	6.0	0.81
Mankouké	ACMAN20-296	49.0	50.0	1.0	0.77
Mankouké	ACMAN20-297	8.0	10.0	2.0	0.91
Mankouké	ACMAN20-297	16.0	18.0	2.0	1.78
	Including	16.0	17.0	1.0	3.00
Mankouké	ACMAN20-297	29.0	42.0	13.0	1.06
	Including	34.0	35.0	1.0	2.07
Mankouké	ACMAN20-297	45.0	49.0	4.0	1.56
	Including	45.0	46.0	1.0	2.12
Mankouké	ACMAN20-298	0.0	4.0	4.0	2.86
	Including	0.0	2.0	2.0	4.65
	Including	1.0	2.0	1.0	6.42
Mankouké	ACMAN20-298	8.0	13.0	5.0	0.74
Mankouké	ACMAN20-298	17.0	21.0	4.0	2.20
	Including	17.0	19.0	2.0	3.51
Mankouké	ACMAN20-298	24.0	36.0	12.0	3.98

S	IGNIFICANT INTE	RSECTI	ONS IN	AC DRILLING (2020)	
Permit	Hole	From	То	Drilled Interval (m)	Au (ppm)
	Including	33.0	34.0	1.0	8.52
Mankouké	ACMAN20-298	46.0	47.0	1.0	0.62
Mankouké	ACMAN20-299	2.0	4.0	2.0	0.98
Mankouké	ACMAN20-305	49.0	50.0	1.0	0.69
Mankouké	ACMAN20-306	1.0	2.0	1.0	0.78
Mankouké	ACMAN20-306	26.0	30.0	4.0	0.58
Mankouké	ACMAN20-306	33.0	47.0	14.0	2.76
	Including	35.0	37.0	2.0	11.49
	Including	35.0	36.0	1.0	18.00
Mankouké	ACMAN20-309	35.0	36.0	1.0	1.40
Mankouké	ACMAN20-309	41.0	43.0	2.0	3.40
	Including	41.0	42.0	1.0	5.84
Mankouké	ACMAN20-309	46.0	47.0	1.0	0.82
Mankouké	ACMAN20-310	0.0	2.0	2.0	0.66
Mankouké	ACMAN20-310	9.0	11.0	2.0	0.57
Mankouké	ACMAN20-310	43.0	44.0	1.0	2.30
Mankouké	ACMAN20-310	48.0	50.0	2.0	1.01
Mankouké	ACMAN20-311	5.0	15.0	10.0	1.66
	Including	7.0	10.0	3.0	3.26
Mankouké	ACMAN20-311	18.0	20.0	2.0	2.26
	Including	18.0	19.0	1.0	2.77
Mankouké	ACMAN20-311	28.0	47.0	19.0	1.24
	Including	40.0	41.0	1.0	2.21
	Including	44.0	46.0	2.0	4.87
	Including	45.0	46.0	1.0	7.05
Mankouké	ACMAN20-312	6.0	27.0	21.0	14.95
	Including	8.0	25.0	17.0	18.23
	Including	8.0	24.0	16.0	19.07
Mankouké	ACMAN20-312	30.0	31.0	1.0	0.61
Mankouké	ACMAN20-312	35.0	39.0	4.0	5.03
	Including	38.0	39.0	1.0	18.50
Mankouké	ACMAN20-312	43.0	45.0	2.0	0.66
Mankouké	ACMAN20-313	0.0	17.0	17.0	1.74
2	Including	9.0	15.0	6.0	3.28
Mankouké	ACMAN20-314	2.0	7.0	5.0	0.51
Mankouké	ACMAN20-314	10.0	15.0	5.0	1.80
	Including	12.0	15.0	3.0	2.50
Mankouké	ACMAN20-314	22.0	42.0	20.0	12.12
	Including	26.0	34.0	8.0	27.94

S	IGNIFICANT INTE	RSECTI	ONS IN	AC DRILLING (2020)	
Permit	Hole	From	То	Drilled Interval (m)	Au (ppm)
	Including	26.0	29.0	3.0	70.83
	Including	38.0	39.0	1.0	9.46
Mankouké	ACMAN20-315	2.0	21.0	19.0	1.52
	Including	7.0	12.0	5.0	2.38
	Including	16.0	17.0	1.0	3.01
Mankouké	ACMAN20-315	35.0	36.0	1.0	3.07
Mankouké	ACMAN20-316	0.0	11.0	11.0	1.06
	Including	0.0	1.0	1.0	3.87
Mankouké	ACMAN20-317	34.0	35.0	1.0	3.55
Mankouké	ACMAN20-317	38.0	41.0	3.0	1.38
	Including	40.0	41.0	1.0	2.30
Mankouké	ACMAN20-318	2.0	3.0	1.0	0.99
Mankouké	ACMAN20-318	7.0	10.0	3.0	0.93
Mankouké	ACMAN20-318	20.0	21.0	1.0	1.71
Mankouké	ACMAN20-318	25.0	33.0	8.0	1.22
	Including	27.0	29.0	2.0	2.45
	Including	31.0	32.0	1.0	2.30
Mankouké	ACMAN20-319	11.0	48.0	37.0	3.27
	Including	13.0	14.0	1.0	2.09
	Including	17.0	19.0	2.0	3.17
	Including	22.0	41.0	19.0	5.12
	Including	22.0	26.0	4.0	9.35
	Including	33.0	37.0	4.0	7.68
Mankouké	ACMAN20-320	3.0	4.0	1.0	1.03
Mankouké	ACMAN20-320	7.0	13.0	6.0	1.46
101uiikouko	Including	8.0	9.0	1.0	3.76
Mankouké	ACMAN20-320	16.0	33.0	17.0	2.41
101uiikouko	Including	18.0	19.0	1.0	2.74
	Including	29.0	32.0	3.0	7.46
	Including	30.0	32.0	2.0	9.00
Mankouké	ACMAN20-320	36.0	43.0	7.0	1.01
Wankouke	Including	42.0	43.0	1.0	2.14
Mankouké	ACMAN20-321	1.0	4.0	3.0	1.56
muntoure	Including	1.0	2.0	1.0	2.87
Mankouké	ACMAN20-321	9.0	20.0	11.0	0.72
Mankouké	ACMAN20-322	9.0	13.0	4.0	0.99
Mankouké	ACMAN20-322	9.0	14.0	5.0	1.49
	Including	9.0	10.0	1.0	4.03
Mankouké	ACMAN20-323	17.0	22.0	5.0	0.62

Permit	Hole	From	То	Drilled Interval (m)	Au (ppm)
Mankouké	ACMAN20-326	27.0	28.0	1.0	0.79
Mankouké	ACMAN20-326	44.0	46.0	2.0	1.07
Mankouké	ACMAN20-327	5.0	6.0	1.0	0.81
Mankouké	ACMAN20-327	20.0	27.0	7.0	0.77
Mankouké	ACMAN20-327	30.0	32.0	2.0	3.92
	Including	30.0	31.0	1.0	6.49
Mankouké	ACMAN20-327	38.0	50.0	12.0	2.49
	Including	44.0	50.0	6.0	4.42
	Including	44.0	45.0	1.0	12.40
Mankouké	ACMAN20-328	2.0	3.0	1.0	0.98
Mankouké	ACMAN20-328	18.0	21.0	3.0	1.37
	Including	18.0	19.0	1.0	2.54
Mankouké	ACMAN20-328	30.0	34.0	4.0	4.85
	Including	32.0	34.0	2.0	8.51
	Including	33.0	34.0	1.0	14.80
Mankouké	ACMAN20-328	41.0	42.0	1.0	1.00
Mankouké	ACMAN20-328	47.0	48.0	1.0	2.94
Mankouké	ACMAN20-330	29.0	30.0	1.0	0.88
Mankouké	ACMAN20-330	36.0	43.0	7.0	0.59
Mankouké	ACMAN20-331	32.0	33.0	1.0	1.51
Mankouké	ACMAN20-331	48.0	49.0	1.0	0.78
Mankouké	ACMAN20-337	6.0	7.0	1.0	0.70
Mankouké	ACMAN20-355	18.0	20.0	2.0	0.86
Mankouké	ACMAN20-357	18.0	19.0	1.0	0.83
Mankouké	ACMAN20-357	34.0	38.0	4.0	1.29
	Including	34.0	35.0	1.0	3.05
Mankouké	ACMAN20-415	24.0	28.0	4.0	1.75
	Including	24.0	26.0	2.0	2.53
Mankouké	ACMAN20-466	18.0	28.0	10.0	0.99
Mankouké	ACMAN20-467	8.0	28.0	20.0	3.00
	Including	18.0	28.0	10.0	4.38
	Including	22.0	26.0	4.0	5.64
Mankouké	ACMAN20-469	12.0	48.0	36.0	1.12
	Including	16.0	18.0	2.0	2.76
Mankouké	ACMAN20-470	6.0	14.0	8.0	0.74
Mankouké	ACMAN20-470	34.0	38.0	4.0	0.77
Mankouké	ACMAN20-470	48.0	50.0	2.0	0.50
Mankouké	ACMAN20-471	10.0	18.0	8.0	1.68
	Including	12.0	16.0	4.0	2.50

SIG	SIGNIFICANT INTERSECTIONS IN AC DRILLING (2020)								
Permit	Hole	From	То	Drilled Interval (m)	Au (ppm)				
Mankouké	ACMAN20-471	24.0	26.0	2.0	0.52				
Mankouké	ACMAN20-472	10.0	16.0	6.0	0.98				
Mankouké	ACMAN20-472	24.0	26.0	2.0	0.65				
Mankouké	ACMAN20-473	10.0	22.0	12.0	0.59				
Mankouké	ACMAN20-473	44.0	48.0	4.0	2.97				
	Including	44.0	46.0	2.0	5.16				
Mankouké	ACMAN20-491	0.0	2.0	2.0	0.68				
Kandiolé North	ACKAN20-33	56	58	2	0.55				
Kandiolé North	ACKAN20-38	42	44	2	0.69				
Kandiolé North	ACKAN20-39	14	18	4	11.30				
Kandiolé North	ACKAN20-39	48	50	2	1.07				
Kandiolé North	ACKAN20-39	54	56	2	0.91				
Kandiolé North	ACKAN20-60	2	4	2	4.57				
Kandiolé North	ACKAN20-61	12	14	2	0.92				
Kandiolé North	ACKAN20-61	22	24	2	0.54				
Kandiolé North	ACKAN20-61	30	32	2	0.90				
Kandiolé North	ACKAN20-78	8	10	2	0.64				
Kandiolé North	ACKAN20-82	48	52	4	3.31				
	Including	50	52	2	5.32				
Kandiolé North	ACKAN20-83	42	48	6	0.60				
Kandiolé North	ACKAN20-83	52	54	2	0.64				
Kandiolé North	ACKAN20-84	6	8	2	1.46				
Kandiolé North	ACKAN20-90	36	38	2	1.97				
Kandiolé North	ACKAN20-94	12	14	2	0.69				
Kandiolé North	ACKAN20-96	0	2	2	0.78				
Kandiolé North	ACKAN20-96	44	46	2	1.14				
Kandiolé North	ACKAN20-103	40	42	2	0.72				
Kandiolé North	ACKAN20-105	12	16	4	0.67				
Kandiolé North	ACKAN20-105	20	22	2	0.57				
Kandiolé North	ACKAN20-105	26	28	2	0.50				
Kandiolé North	ACKAN20-128	52	54	2	0.66				
Kandiolé North	ACKAN20-129	0	2	2	0.65				
Kandiolé North	ACKAN20-129	14	18	4	1.23				
Kandiolé North	ACKAN20-130	4	6	2	2.46				
Kandiolé North	ACKAN20-175	0	2	2	2.09				
Kandiolé North	ACKAN20-247	4	6	2	2.64				
Kandiolé North	ACKAN20-266	2	4	2	1.01				
Kandiolé North	ACKAN20-310	4	6	2	0.90				
Kandiolé West	ACKAO20-82	10	12	2	5.51				

SIGNIFICANT INTERSECTIONS IN AC DRILLING (2020)									
Permit	Hole	From	То	Drilled Interval (m)	Au (ppm)				
Kandiolé West	ACKAO20-84	46	48	2	0.59				
thickness of at leas	t 1 m, allowing a m	aximum o	of 2 m o	grade of at least 0.5 g/t Au a of waste within the intercept calculated with a minimum	t. Higher				

APPENDIX 6.SIGNIFICANT INTERSECTIONS IN RC DRILLING

Permit	Hole	From (m)	To (m)	Drilled Interval (m)	Au (ppm)
Mankouké	RCMan-19-01	32	34	2	0.726
Mankouké	RCMan-19-01	37	38	1	0.852
Mankouké	RCMan-19-01	41	42	1	0.675
Mankouké	RCMan-19-01	47	50	3	2.599
	Including	47	48	1	5.722
Mankouké	RCMan-19-02	79	87	8	1.683
	Including	81	84	3	2.821
Mankouké	DDHMan-19-13*	31.0	32.0	1.0	0.75
Mankouké	DDHMan-19-13*	36.0	37.0	1.0	1.10
Mankouké	DDHMan-19-13*	41.0	42.0	1.0	0.64
Mankouké	DDHMan-19-14*	0.0	1.0	1.0	2.29
Mankouké	DDHMan-19-16*	46.0	49.0	3.0	1.02
Mankouké	DDHMan-19-19*	46.0	47.0	1.0	1.50

*From the RC portion of an RC-DD drill hole

Note: this table includes mineralised intercepts with a grade of at least 0.5 g/t Au and a drilled thickness of at least 1 m, allowing a maximum of 2 m of waste within the intercept. Higher grade intercepts within the wider drilled interval were calculated with a minimum grade of 2 g/t Au and 5 g/t Au

	SIGNIFICANT INTERSECTIONS IN RC DRILLING (2020)								
Permit	Hole	From (m)	To (m)	Drilled Interval (m)	Au ppm				
Mankouké	RCDDMAN20-23	9.0	12.0	3.0	0.59				
Mankouké	RCMAN20-04	2.0	3.0	1.0	1.11				
Mankouké	RCMAN20-04	7.0	12.0	5.0	0.83				
Mankouké	RCMAN20-04	28.0	40.0	12.0	0.81				
Mankouké	RCMAN20-04	43.0	57.0	14.0	1.11				
	Including	47.0	48.0	1.0	2.54				
	Including	55.0	56.0	1.0	2.31				
Mankouké	RCMAN20-04	60.0	77.0	17.0	0.97				
	Including	66.0	68.0	2.0	3.57				
Mankouké	RCMAN20-04	81.0	85.0	4.0	0.69				
Mankouké	RCMAN20-04	88.0	91.0	3.0	0.51				
Mankouké	RCMAN20-04	93.0	94.0	1.0	0.58				
Mankouké	RCMAN20-04	97.0	107.0	10.0	1.39				
	Including	102.0	104.0	2.0	2.36				
Mankouké	RCMAN20-04	111.0	118.0	7.0	0.75				
Mankouké	RCMAN20-05	3.0	20.0	17.0	1.01				
	Including	17.0	19.0	2.0	2.76				
Mankouké	RCMAN20-05	23.0	29.0	6.0	0.73				

Permit	Hole	From (m)	To (m)	Drilled Interval (m)	Au ppm
Mankouké	RCMAN20-05	38.0	54.0	16.0	2.08
	Including	41.0	44.0	3.0	4.88
	Including	41.0	43.0	2.0	5.94
	Including	48.0	50.0	2.0	4.96
	Including	49.0	50.0	1.0	5.86
Mankouké	RCMAN20-05	57.0	76.0	19.0	0.76
	Including	63.0	64.0	1.0	2.57
	Including	69.0	70.0	1.0	2.24
Mankouké	RCMAN20-06	62.0	70.0	8.0	0.63
Mankouké	RCMAN20-06	110.0	114.0	4.0	0.56
Mankouké	RCMAN20-08	30.0	31.0	1.0	0.51
Mankouké	RCMAN20-08	36.0	37.0	1.0	1.31
Mankouké	RCMAN20-09	16.0	17.0	1.0	0.74
Mankouké	RCMAN20-09	25.0	26.0	1.0	1.29
Mankouké	RCMAN20-10	5.0	18.0	13.0	1.53
	Including	8.0	12.0	4.0	3.04
	Including	16.0	17.0	1.0	2.09
Mankouké	RCMAN20-10	30.0	34.0	4.0	0.63
Mankouké	RCMAN20-10	37.0	41.0	4.0	0.86
Mankouké	RCMAN20-10	44.0	45.0	1.0	0.59
Mankouké	RCMAN20-10	70.0	77.0	7.0	9.69
	Including	71.0	76.0	5.0	13.31
Mankouké	RCMAN20-10	87.0	90.0	3.0	11.96
	Including	87.0	89.0	2.0	17.43
Mankouké	RCMAN20-10	93.0	94.0	1.0	3.15
Mankouké	RCMAN20-10	99.0	100.0	1.0	0.92
Mankouké	RCMAN20-10	108.0	115.0	7.0	4.36
	Including	109.0	113.0	4.0	6.72
	Including	110.0	113.0	3.0	7.85
Mankouké	RCMAN20-10	119.0	134.0	15.0	2.67
	Including	120.0	124.0	4.0	6.92
	Including	122.0	124.0	2.0	9.86
Mankouké	RCMAN20-11	21.0	30.0	9.0	5.72
	Including	22.0	28.0	6.0	7.86
Mankouké	RCMAN20-11	33.0	36.0	3.0	0.94
Mankouké	RCMAN20-11	39.0	43.0	4.0	0.61
Mankouké	RCMAN20-12	4.0	5.0	1.0	0.51
Mankouké	RCMAN20-12	8.0	9.0	1.0	0.60
Mankouké	RCMAN20-12	14.0	15.0	1.0	0.58

Permit	Hole	From (m)	To (m)	Drilled Interval (m)	Au ppm
Mankouké	RCMAN20-12	96.0	106.0	10.0	2.03
	Including	101.0	105.0	4.0	4.03
	Including	103.0	104.0	1.0	5.65
Mankouké	RCMAN20-13	31.0	36.0	5.0	0.97
Mankouké	RCMAN20-14	28.0	30.0	2.0	2.13
	Including	29.0	30.0	1.0	3.41

Note: this table includes mineralised intercepts with a grade of at least 0.5 g/t Au and a drilled thickness of at least 1 m, allowing a maximum of 2 m of waste within the intercept. Higher grade intercepts within the wider drilled interval were calculated with a minimum grade of 2 g/t Au and 5 g/t Au

APPENDIX 7. SIGNIFICANT INTERSECTIONS IN DIAMOND CORE DRILLING

Permit	Hole	From (m)	To (m)	Drilled Interval (m)	Au (ppm)
Mankouké	DDHMan-19-01	35.0	39.0	4.0	1.04
Mankouké	DDHMan-19-01	47.0	48.0	1.0	1.97
Mankouké	DDHMan-19-02	75.1	77.1	2.0	0.99
Mankouké	DDHMan-19-03	54.1	57.1	3.0	5.56
	Including	54.1	56.1	2.0	7.14
Mankouké	DDHMan-19-03	60.1	62.1	2.0	6.48
	Including	60.1	61.1	1.0	8.98
Mankouké	DDHMan-19-03	71.1	76.1	5.0	6.53
	Including	72.1	75.1	3.0	10.09
	Including	73.1	75.1	2.0	12.94
Mankouké	DDHMan-19-04	27.1	28.1	1.0	1.69
Mankouké	DDHMan-19-04	68.1	72.1	4.0	0.80
Mankouké	DDHMan-19-04	79.1	89.1	10.0	8.63
	Including	79.1	86.1	7.0	11.48
Mankouké	DDHMan-19-05	48.1	52.1	4.0	0.56
Mankouké	DDHMan-19-07	16.1	17.1	1.0	0.71
Mankouké	DDHMan-19-07	28.1	30.1	2.0	18.70
	Including	28.1	29.1	1.0	34.00
Mankouké	DDHMan-19-07	38.1	39.1	1.0	0.58
Mankouké	DDHMan-19-08	11.1	12.1	1.0	1.07
Mankouké	DDHMan-19-08	32.1	33.1	1.0	12.70
Mankouké	DDHMan-19-08	66.1	76.1	10.0	3.45
	Including	66.1	70.1	4.0	2.74
	Including	73.1	76.1	3.0	6.76
Mankouké	DDHMan-19-08	85.1	86.1	1.0	6.29
Mankouké	DDHMan-19-11	1.0	2.0	1.0	0.76
Mankouké	DDHMan-19-11	26.0	27.0	1.0	0.52
Mankouké	DDHMan-19-12	104.0	105.0	1.0	1.07
Mankouké	DDHMan-19-13	55.0	57.0	2.0	4.16
	Including	55.0	56.0	1.0	7.81
Mankouké	DDHMan-19-13	74.0	75.0	1.0	0.56
Mankouké	DDHMan-19-13	82.0	83.0	1.0	1.51
Mankouké	DDHMan-19-17	72.0	73.0	1.0	0.79
Mankouké	DDHMan-19-18	103.0	104.0	1.0	1.19
Mankouké	DDHMan-19-19	52.0	58.0	6.0	1.21
	Including	56.0	57.0	1.0	3.88

Note: the table above includes mineralised intercepts with a grade of at least 0.5 g/t Au and a drilled thickness of at least 1 m, allowing a maximum of 2 m of waste within the intercept. Higher grade intercepts within the wider drilled interval were calculated with a minimum grade of 2 g/t Au and 5 g/t Au

SIGNI	SIGNIFICANT INTERSECTIONS IN DIAMOND DRILLING (2020)					
Permit	Hole	From (m)	To (m)	Drilled Interval (m)	Au ppm	
Mankouké	DDMAN20-20	4.7	12.7	8.0	3.00	
	Including	7.7	9.7	2.0	9.82	
	Including	8.7	9.7	1.0	17.10	
Mankouké	DDMAN20-20	15.7	62.7	47.0	4.30	
	Including	19.7	20.7	1.0	2.02	
	Including	27.7	47.7	20.0	8.81	
	Including	27.7	30.7	3.0	23.30	
	Including	38.7	45.7	7.0	12.36	
	Including	61.7	62.7	1.0	2.05	
Mankouké	DDMAN20-20	65.7	92.7	27.0	1.92	
	Including	69.7	70.7	1.0	4.04	
	Including	73.7	75.7	2.0	9.28	
	Including	84.7	87.7	3.0	3.10	
	Including	86.7	87.7	1.0	5.65	
Mankouké	DDMAN20-20	97.7	98.7	1.0	0.65	
Mankouké	DDMAN20-20	122.7	124.7	2.0	1.34	
Mankouké	DDMAN20-20	157.7	158.7	1.0	0.73	
Mankouké	DDMAN20-21	10.3	11.3	1.0	0.60	
Mankouké	DDMAN20-21	26.3	27.3	1.0	1.76	
Mankouké	DDMAN20-21	30.3	31.3	1.0	1.91	
Mankouké	DDMAN20-21	46.3	47.3	1.0	1.72	
Mankouké	DDMAN20-21	51.3	55.3	4.0	0.83	
	Including	51.3	52.3	1.0	2.63	
Mankouké	DDMAN20-21	62.3	78.3	16.0	6.26	
	Including	64.3	77.3	13.0	7.53	
	Including	66.3	77.3	11.0	8.49	
Mankouké	DDMAN20-21	81.3	102.3	21.0	3.18	
	Including	82.3	83.3	1.0	3.12	
	Including	87.3	101.3	14.0	4.19	
	Including	89.3	94.3	5.0	5.54	
	Including	99.3	100.3	1.0	8.76	
Mankouké	DDMAN20-24	9.2	14.2	5.0	1.57	
	Including	9.2	10.2	1.0	2.13	
	Including	13.2	14.2	1.0	2.09	
Mankouké	DDMAN20-24	19.2	44.2	25.0	3.66	
	Including	19.2	41.2	22.0	4.09	
	Including	19.2	27.2	8.0	5.92	
	Including	35.2	36.2	1.0	7.34	

SIGNI	SIGNIFICANT INTERSECTIONS IN DIAMOND DRILLING (2020)						
Permit	Hole	From (m)	To (m)	Drilled Interval (m)	Au ppm		
Mankouké	DDMAN20-24	56.2	57.2	1.0	3.28		
Mankouké	DDMAN20-24	72.2	74.2	2.0	1.19		
Mankouké	DDMAN20-24	77.2	91.2	14.0	1.96		
	Including	78.2	81.2	3.0	5.78		
	Including	79.2	80.2	1.0	9.32		
	Including	86.2	87.2	1.0	3.45		
Mankouké	DDMAN20-24	98.2	101.2	3.0	0.56		
Mankouké	DDMAN20-24	124.2	125.2	1.0	0.76		
Mankouké	DDMAN20-24	151.2	153.2	2.0	1.14		
Mankouké	DDMAN20-25	21.2	23.2	2.0	1.93		
	Including	22.2	23.2	1.0	2.10		
Mankouké	DDMAN20-25	27.2	31.2	4.0	13.39		
	Including	29.2	31.2	2.0	23.00		
Mankouké	DDMAN20-25	44.2	49.2	5.0	1.58		
	Including	44.2	45.2	1.0	3.96		
Mankouké	DDMAN20-25	66.2	67.2	1.0	0.71		
Mankouké	DDMAN20-25	70.2	71.2	1.0	0.98		
Mankouké	DDMAN20-25	92.2	94.2	2.0	1.06		
Mankouké	DDMAN20-25	98.2	100.2	2.0	1.86		
	Including	98.2	99.2	1.0	3.19		
Mankouké	DDMAN20-25	110.2	111.2	1.0	0.79		
Mankouké	DDMAN20-25	122.2	124.2	2.0	0.73		
Mankouké	DDMAN20-25	127.2	134.2	7.0	3.08		
	Including	128.2	134.2	6.0	3.36		
	Including	129.2	130.2	1.0	8.81		
Mankouké	DDMAN20-25	140.2	143.7	3.5	18.62		
	Including	141.2	143.7	2.5	25.87		
	Including	142.2	143.7	1.5	40.70		
Mankouké	DDMAN20-26	6.2	15.2	9.0	0.92		
Mankouké	DDMAN20-26	20.2	32.2	12.0	10.21		
	Including	24.2	29.2	5.0	23.73		
	Including	24.2	27.2	3.0	36.51		
Mankouké	DDMAN20-26	37.2	42.2	5.0	0.60		
Mankouké	DDMAN20-26	47.2	48.2	1.0	2.12		
Mankouké	DDMAN20-26	57.2	58.2	1.0	0.60		
Mankouké	DDMAN20-26	75.2	83.2	8.0	0.83		
Mankouké	DDMAN20-26	89.2	90.2	1.0	0.55		
Mankouké	DDMAN20-26	120.2	124.2	4.0	1.04		
Mankouké	DDMAN20-27	1.2	17.2	16.0	1.11		

SIGNIFICANT INTERSECTIONS IN DIAMOND DRILLING (2020)					
Permit	Hole	From (m)	To (m)	Drilled Interval (m)	Au ppm
	Including	11.2	15.2	4.0	2.18
Mankouké	DDMAN20-27	20.2	24.2	4.0	1.33
	Including	22.2	23.2	1.0	2.06
Mankouké	DDMAN20-27	29.2	86.2	57.0	3.66
	Including	29.2	52.2	23.0	7.00
	Including	29.2	44.2	15.0	9.19
	Including	56.2	59.2	3.0	4.44
	Including	57.2	58.2	1.0	6.85
	Including	69.2	70.2	1.0	2.57
	Including	79.2	80.2	1.0	4.82
Mankouké	DDMAN20-27	89.2	99.2	10.0	1.38
	Including	90.2	92.2	2.0	3.80
	Including	98.2	99.2	1.0	2.51
Mankouké	DDMAN20-27	141.2	142.2	1.0	0.50
Mankouké	DDMAN20-28	41.2	42.2	1.0	0.54
Mankouké	DDMAN20-29	3.2	8.2	5.0	2.56
	Including	3.2	6.2	3.0	3.74
Mankouké	DDMAN20-29	39.2	101.2	62.0	4.84
	Including	47.2	67.2	20.0	6.35
	Including	48.2	49.2	1.0	5.12
	Including	55.2	62.2	7.0	12.71
	Including	73.2	88.2	15.0	9.12
	Including	73.2	86.2	13.0	10.00
	Including	94.2	98.2	4.0	4.07
Mankouké	DDMAN20-29	110.2	141.2	31.0	2.61
	Including	112.2	134.7	22.5	3.32
	Including	112.2	117.2	5.0	5.43
	Including	127.2	128.2	1.0	5.61
	Including	130.2	131.7	1.5	6.14
Mankouké	DDMAN20-30	4.2	5.2	1.0	1.42
Mankouké	DDMAN20-30	50.2	57.2	7.0	1.75
	Including	51.2	52.2	1.0	3.56
	Including	55.2	57.2	2.0	3.37
Mankouké	DDMAN20-30	60.2	66.2	6.0	7.57
	Including	61.2	65.2	4.0	11.01
	Including	61.2	63.2	2.0	18.56
Mankouké	DDMAN20-30	70.2	75.2	5.0	6.84
	Including	70.2	74.2	4.0	8.10
Mankouké	DDMAN20-30	78.2	96.2	18.0	7.01

SIGNIFICANT INTERSECTIONS IN DIAMOND DRILLING (2020)						
Permit	Hole	From (m)	To (m)	Drilled Interval (m)	Au ppm	
	Including	78.2	79.2	1.0	4.03	
	Including	83.2	95.2	12.0	9.88	
	Including	86.2	95.2	9.0	12.02	
Mankouké	DDMAN20-31	88.2	89.2	1.0	1.10	
Mankouké	DDMAN20-31	93.2	114.2	21.0	2.26	
	Including	95.2	106.2	11.0	3.59	
	Including	95.2	96.2	1.0	7.02	
	Including	99.2	100.2	1.0	8.94	
Mankouké	DDMAN20-31	127.2	134.2	7.0	2.45	
	Including	127.2	132.2	5.0	2.90	
	Including	130.2	131.2	1.0	7.30	
Mankouké	DDMAN20-31	137.2	147.2	10.0	2.65	
	Including	140.2	145.2	5.0	4.54	
	Including	142.2	144.2	2.0	5.36	
Mankouké	DDMAN20-31	150.2	153.2	3.0	1.51	
Mankouké	DDMAN20-31	156.2	165.2	9.0	6.02	
	Including	156.2	161.2	5.0	9.81	
Mankouké	DDMAN20-31	181.2	185.2	4.0	2.18	
	Including	181.2	183.2	2.0	3.43	
Mankouké	DDMAN20-32	85.2	86.2	1.0	0.59	
Mankouké	DDMAN20-32	105.2	113.2	8.0	0.92	
	Including	106.2	107.2	1.0	2.93	
Mankouké	DDMAN20-32	130.2	153.2	23.0	2.28	
	Including	131.7	142.2	10.5	3.77	
	Including	134.2	138.2	4.0	5.35	
	Including	150.2	151.2	1.0	2.85	
Mankouké	DDMAN20-33	71.2	72.2	1.0	0.68	
Mankouké	DDMAN20-33	149.7	151.2	1.5	0.55	
Mankouké	DDMAN20-33	171.2	172.2	1.0	0.64	
Mankouké	DDMAN20-34	4.2	5.2	1.0	0.67	
Mankouké	DDMAN20-34	14.2	17.2	3.0	4.71	
	Including	14.2	16.2	2.0	6.38	
	Including	15.2	16.2	1.0	9.87	
Mankouké	DDMAN20-34	23.7	37.2	13.5	2.38	
	Including	25.2	26.7	1.5	11.80	
	Including	32.2	34.2	2.0	2.58	
Mankouké	DDMAN20-34	41.2	52.2	11.0	7.51	
	Including	42.2	46.2	4.0	17.25	
	Including	49.2	50.2	1.0	6.35	

SIGNI	SIGNIFICANT INTERSECTIONS IN DIAMOND DRILLING (2020)						
Permit	Hole	From (m)	To (m)	Drilled Interval (m)	Au ppm		
Mankouké	DDMAN20-34	57.2	61.2	4.0	2.71		
	Including	60.2	61.2	1.0	8.96		
Mankouké	DDMAN20-34	73.2	88.2	15.0	1.14		
	Including	73.2	74.2	1.0	2.63		
	Including	78.2	80.2	2.0	2.77		
	Including	85.2	86.2	1.0	2.04		
Mankouké	DDMAN20-34	93.2	114.2	21.0	6.65		
	Including	97.2	114.2	17.0	7.93		
	Including	97.2	100.2	3.0	9.28		
	Including	103.2	109.2	6.0	13.88		
Mankouké	DDMAN20-34	117.2	158.2	41.0	4.75		
	Including	123.2	127.2	4.0	10.10		
	Including	123.2	125.2	2.0	15.95		
	Including	130.2	144.2	14.0	7.86		
	Including	131.2	134.2	3.0	5.07		
	Including	138.2	143.2	5.0	15.11		
	Including	148.2	158.2	10.0	3.30		
	Including	151.2	152.2	1.0	8.84		
Mankouké	DDMAN20-35	29.2	32.2	3.0	0.81		
Mankouké	DDMAN20-35	38.2	48.2	10.0	1.01		
	Including	38.2	39.2	1.0	3.47		
	Including	44.2	45.2	1.0	2.10		
Mankouké	DDMAN20-35	53.2	54.2	1.0	2.05		
Mankouké	DDMAN20-35	57.2	58.2	1.0	0.56		
Mankouké	DDMAN20-36	16.2	17.2	1.0	0.60		
Mankouké	DDMAN20-38	29.2	30.2	1.0	0.58		
Mankouké	DDMAN20-40	2.0	12.0	10.0	0.66		
Mankouké	DDMAN20-40	19.0	28.0	9.0	1.17		
Mankouké	DDMAN20-40	41.0	54.0	13.0	1.52		
	Including	45.0	46.0	1.0	2.45		
	Including	47.0	51.0	4.0	2.53		
Mankouké	DDMAN20-40	58.0	67.0	9.0	2.83		
	Including	59.0	66.0	7.0	3.30		
	Including	61.0	63.0	2.0	5.83		
Mankouké	DDMAN20-40	70.0	81.0	11.0	2.13		
	Including	73.0	79.0	6.0	2.78		
Mankouké	DDMAN20-41	5.0	13.0	8.0	1.12		
	Including	5.0	6.0	1.0	3.62		
Mankouké	DDMAN20-41	28.0	32.0	4.0	1.33		

SIGN	SIGNIFICANT INTERSECTIONS IN DIAMOND DRILLING (2020)						
Permit	Hole	From (m)	To (m)	Drilled Interval (m)	Au ppm		
	Including	30.0	31.0	1.0	3.21		
Mankouké	DDMAN20-41	37.0	38.0	1.0	1.41		
Mankouké	DDMAN20-41	41.0	52.0	11.0	1.69		
	Including	44.0	46.0	2.0	2.30		
	Including	48.0	52.0	4.0	2.37		
Mankouké	DDMAN20-41	55.0	58.0	3.0	1.40		
Mankouké	DDMAN20-41	67.0	87.0	20.0	0.97		
	Including	75.0	76.0	1.0	2.49		
Mankouké	DDMAN20-41	95.0	109.0	14.0	1.14		
	Including	107.5	109.0	1.5	2.10		
Mankouké	DDMAN20-41	114.0	115.0	1.0	0.77		
Mankouké	DDMAN20-41	133.0	136.0	3.0	3.88		
	Including	134.0	136.0	2.0	5.21		
	Including	134.0	135.0	1.0	5.53		
Mankouké	DDMAN20-41	148.0	149.5	1.5	2.56		
Mankouké	DDMAN20-41	153.0	177.0	24.0	5.14		
	Including	154.0	175.0	21.0	5.75		
	Including	155.5	160.0	4.5	14.72		
	Including	169.0	170.0	1.0	12.10		
	Including	174.0	175.0	1.0	5.03		
Mankouké	DDMAN20-41	180.0	184.0	4.0	1.52		
	Including	183.0	184.0	1.0	4.22		
Mankouké	DDMAN20-44	8.0	10.0	2.0	1.14		
Mankouké	DDMAN20-44	24.0	25.0	1.0	0.97		
Mankouké	DDMAN20-44	31.0	34.0	3.0	1.87		
	Including	33.0	34.0	1.0	3.91		
Mankouké	DDMAN20-44	39.0	57.0	18.0	2.11		
	Including	40.0	43.0	3.0	7.12		
	Including	41.0	43.0	2.0	9.43		
	Including	47.0	48.0	1.0	2.24		
	Including	56.0	57.0	1.0	2.14		
Mankouké	DDMAN20-44	99.0	100.0	1.0	0.91		
Mankouké	DDMAN20-44	127.0	128.0	1.0	0.79		
Mankouké	DDMAN20-47	30.0	31.0	1.0	0.61		
Mankouké	DDMAN20-47	46.0	61.0	15.0	1.05		
	Including	47.0	48.0	1.0	2.35		
	Including	57.0	59.0	2.0	2.31		
Mankouké	DDMAN20-47	103.0	111.0	8.0	0.75		
Mankouké	DDMAN20-47	114.0	130.0	16.0	1.86		

Permit	Hole	From (m)	To (m)	Drilled Interval (m)	Au ppm
	Including	114.0	115.0	1.0	2.30
	Including	119.0	121.0	2.0	6.85
	Including	119.0	120.0	1.0	9.83
	Including	125.0	126.0	1.0	2.94
Mankouké	DDMAN20-47	146.0	152.0	6.0	3.47
	Including	146.0	151.0	5.0	4.00
	Including	150.0	151.0	1.0	5.58
Mankouké	DDMAN20-47	157.0	165.0	8.0	0.96

Note: the table above includes mineralised intercepts with a grade of at least 0.5 g/t Au and a drilled thickness of at least 1 m, allowing a maximum of 2 m of waste within the intercept. Higher grade intercepts within the wider drilled interval were calculated with a minimum grade of 2 g/t Au and 5 g/t Au

