

NEWS RELEASE

Roscan Gold Significantly Increases Depth and Continuity of Mineralization Along Strike of 600m at Kabaya. All 52 Holes Drilled since Acquisition Intersect Gold Mineralization

Toronto, Ontario. – May 4th, 2021 – Roscan Gold Corporation ("Roscan" or the "Company") (TSX-V: ROS; FSE:20J; OTC:RCGCF) is pleased to announce positive DD/RC/AC drill results (Figure 1) from an additional 42 holes (29 DD and RC for 5,799m) totaling 6,500 meters (m) (Figure 1) at its Kabaya Target with all holes hitting gold mineralization (Table 1).

At the time of acquisition on July 3, 2020, Kabaya's NI43-101 resource was pit-constrained to a depth of 58m. Since the acquisition, all 52 holes DD/RC drilled by Roscan have intersected gold mineralization showing the remarkable continuity and consistency of the deposit. Our January 2021 drilling update (see News Release 19th Jan. 2021) reported an increase of the depth potential of Kabaya (KB1) to 196 meters (Figure 2).

Subsequent drilling outlined in this release has now confirmed the continuity of the mineralization to a depth of 232 meters (KB1) over a strike length of 600 meters (KB1 and KB2) and it remains open. The recent drilling outlined below has dramatically increased the volume of the prospective deposit and has major positive implications for future resource growth. In addition, at the East Limb (KB2), the mineralization has now been extended down to 150m in Fresh Rock from prior depth of 65m (Figure 2 and Figure 3) and remains open at depth.

There were multiple holes intersecting high gold grades (Table 1 and Figure 1), such as Drill hole RCDBS21-016 which intersected 17.66 gpt over 3.0m. While several holes showcased the broad consistency of the mineralization with intercepts such as 2.49 gpt gold over 19.0m from drill hole RCDBS21-022. 2.29 gpt gold over 19.0m from drill hole RCDBS21-016, 1.31 gpt gold over 21.0m from drill hole RCDBS21-024 and 1.21 gpt gold over 30.0m from drill hole RCDBS21-012. Grade continuity and mineralization consistency reinforces our expectation for a robust new resource estimate at Kabaya by year end.

In addition, shallow regional step-out drilling has also revealed **2 newly discovered areas of high perspectivity**, **KB3 with 3.65gpt over 4.0m** & **KB4 with 3gpt over 16.0m**, located respectively 1.0km North and 1.5km South from the current resource footprint (Figure 1). It should be noted that KB4 lies on the magnetic trend that extends from Mankouke West into Kabaya (Figure 4) over a 15km strike which has already yielding multiple high-grade intersections from earlier stage regional drilling such as our KN2 and MS2 discoveries announced over the last few months (Figure 3).

<u>Kabaya – DD + RC Drilling Highlights (KB1 and KB2)</u>

- 17.66 gpt gold over 3.0m from drill hole RCDBS21-016 from 16.0m
 - Including 26.00 gpt gold over 2.0m from 16.0m
 - O And 14.33 gpt gold over 2.0m from drill hole RCDBS21-016 from 74.0m
 - Including 28.00 gpt gold over 1.0m from 74.0m
 - And 2.29 gpt gold over 19.0m from drill hole RCDBS21-016 from 23.0m
 - Including 10.47 gpt gold over 2.0m from 39.0m
- 3.21 gpt gold over 8.0m from drill hole DDDBS21-22 from 46.6m
 - Including 16.10 gpt gold over 1.0m from 47.6m
- 3.09 gpt gold over 9.3m from drill hole DDDBS20-15 from 0.0m
 - Including 8.73 gpt gold over 2.0m from 4.3m
- 2.49 gpt gold over 19.0m from drill hole RCDBS21-022 from 26.0m
 - Including 5.20 gpt gold over 6.0m from 35.0m
- 1.72 gpt gold over 12.0m from drill hole RCDBS21-021 from 2.0m
 - Including 4.68 gpt gold over 3.0m from 9.0m
- 1.31 gpt gold over 21.0m from drill hole RCDBS21-024 from 35.0m
 - Including 4.40 gpt gold over 1.0m from 37.0m
- 1.23 gpt gold over 17.0m from drill hole RCDBS21-018 from 65.0m
 - Including 7.40 gpt gold over 1.0m from 75.0m
- 1.21 gpt gold over 30.0m from drill hole RCDBS21-012 from 27.0m
 - Including 3.38 gpt gold over 3.0m from 39.0m

Kabaya – AC Drilling (KB3 and KB4)

- 3.06 gpt gold over 16.0m from drill hole ACDBS21-1514 from 30m
 - Including 6.53 gpt gold over 6m from 34m
- 1.38 gpt gold over 12.0m from drill hole ACDBS21-1515 from Surface
 - Including 3.25 gpt gold over 4m from 8m

Notes: 1: True width yet to be determined, 2: Table 1 – Assay Highlights, 3: 0.5gpt used as cut-off with 2m internal dilution for drill holes, 4: No top-cut.

Nana Sangmuah, President and CEO, stated, "Since the acquisition in July 2020, Drilling at Kabaya has proven quite valuable as we have dramatically increased the continuity of the mineralization at depth over a strike length of 600m and have identified the potential to tap into a deeper feeder system with both KB1 and KB2 open at depth.

Kabaya has the potential to be a major contributor to our expected maiden resource update by the end of year. We have been very encouraged by our ability to more than triple the vertical extent of the deposit and show its robust continuity along strike. Newly discovered KB3 and KB4 zones could further expand the resource growth potential of Kabaya, and we will follow up with additional drilling in the weeks ahead."

The Kayaba deposit (see Disclosures below¹) has a pit-constrained mineral resource to a depth of 58m, which contains 105,000 ounces of Indicated Resource and 35,000 ounces of Inferred Resource. We have now established mineralization to a depth of 232m at KB1 which remains open. (Figure 2)

¹ Kabaya Project (Source Komet's NI 43-101)

The mineral resource is based on optimized pit shells using a gold price of US\$1,350 and a presumed heap leach gold recovery of saprolite material.

Classification	Tonnage (Mt)	Au (g/t)	Ounces (koz)
Indicated	3.17	1.03	105
Inferred	0.96	1.14	35

Pit Constraint Mineral Resource

- 1. Effective date for resources is January 7, 2019. (Source Komet's NI43-101)
- 2. The independent QP for this resources estimate is Yann Camus, Eng., SGS Canada Inc.
- 3. The mineral resources are presented at a 0.4 g/t Au cut-off grade in pits.
- 4. The resources are presented without dilution.
- 5. Whittle pits have been utilized based on a gold value of US\$1,350/oz.
- 6. Mineral resources that are not mineral reserves do not have demonstrated economic viability.
- 7. No economic evaluation of the resources has been produced.
- 8. This Resource Estimate has been prepared in accordance with CIM definition (2014).
- 9. Density used is of 1.7 based on measurements and similar projects.
- 10. Capping grade is of 30 g/t Au on original assays.

Based on the Disclosure of NI43-101, Section 2.4

- a) The source is Komet's NI43-101 that is effective January,7, 2019
- b) We consider the reliably and relevance to be reasonable
- c) The key assumptions are listed above (1-10) Above
- d) The categories are similar
- e) There are no recent estimates

¹ Technical Report (NI43-101) dated March 5, 2019 (Effective Date: January 7, 2019) with **Title Page**, "Dabia Sud Property, Kabaya Resource, NI 43-101 Technical Report, Mali", prepared by Yann Camus, P. Eng. And Didier Ouedraogo, P. Geo., SGS Geological Services, and filed on SEDAR on March 5, 2019.

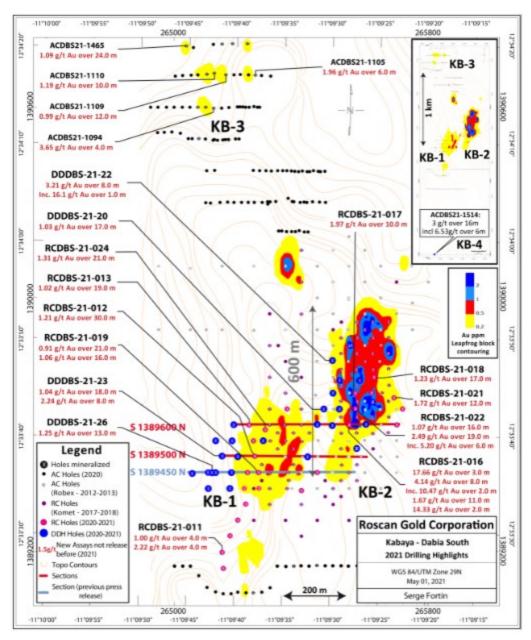


Figure 1: Plan View delineating the new holes drilled at Kabaya Deposit

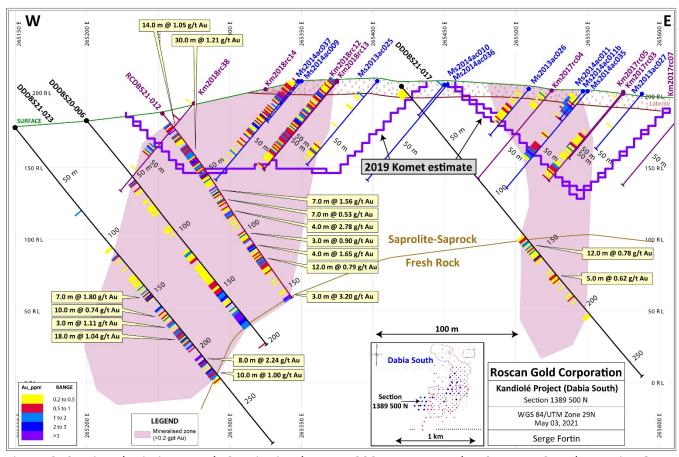


Figure 2: Section depicting Depth Continuity down to 232m at KB1 and 150m at KB2 and Remains Open

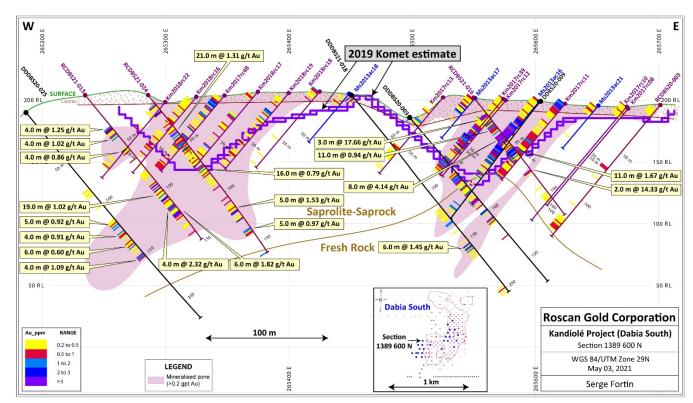


Figure 3: Cross Section depicting High-Grade Continuity on KB2

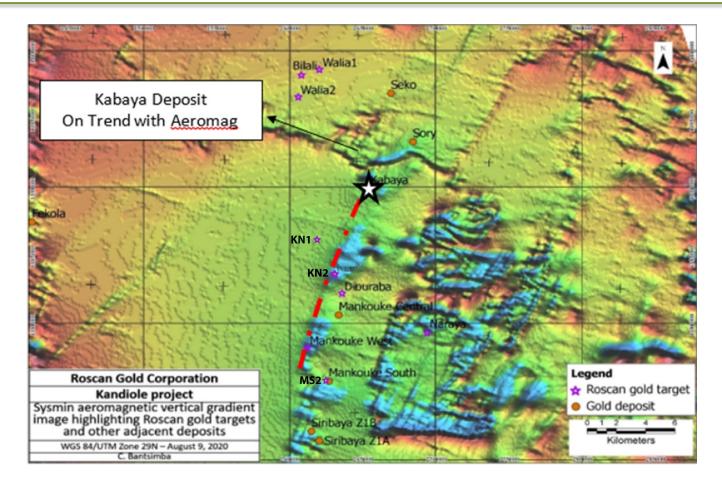


Figure 4: Plan View of Kabaya Deposit with Magnetic Signature on the entire Property

The gold mineralization at Kabaya (Figure 4) is associated with albite-dolomite-pyrite alteration in greywackes and diamictites of the Kofi Formation. The alteration observed in the core indicates a strong hydrothermal system commonly associated with gold deposits in West Africa.

Roscan believes that the Kabaya Deposit is part of a significant structural corridor which spans from Oklo Resources' discoveries of Seko and Disse, to the North East of our land package and then extends southerly for 15km on our property, from Kabaya to our recent Kandiole North (KN2) and MS2 discoveries and continues onto recently acquired Mankouke West Land Package, which shows a strong magnetic signature similar to the other discoveries on this corridor. (Figure 3 and news releases 11th January 2021). Much of this corridor has yet to be tested and thus, Roscan feels that the potential for new discoveries in this corridor is excellent and connecting these multiple targets with drilling will be a key priority in 2021.

Figure 5: Hole DDDBS21-023 at Kabaya: Gold Mineralization showing 1.8gpt over 7m

Figure 6: Hole DDDBS21-025 at Kabaya: Showing high grade Intersects.

Drilling and Analytical Protocol

Roscan uses Air Core, Reverse Circulation and Diamond types of drilling in the Kandiole Project. The Air Core drilling is mainly focused on drilling exploration targets.

The samples are sent for preparation to Bureau Veritas Mineral Laboratories in Bamako, Mali and assayed at their analytical facilities in Bamako for fire assay with atomic absorption finish and by gravimetric finish for grades above 10gpt Au.

Roscan applied industry-standard QA/QC procedures to the program using reference materials, blanks, standards, and duplicates.

Table 1: Drillhole Highlights at Kabaya Target (May 4th, 2021)

Hole ID	From (m)	To (m)	Interval (m)	gpt Au	Comment			
DDDBS20-15	0.0	9.3	9.3	3.09	Laterite			
including	4.3	6.3	2.0	8.73	Laterite			
	38.3	44.3	6.0	0.80	Saprolite			
including	42.3	43.3	1.0	1.93	Saprolite			
DDDBS21-16	34.0	35.0	1.0	0.66	Saprolite			
	53.0	57.0	4.0	0.67	Saprolite			
	71.0	78.0	7.0	0.66	Saprolite			
	86.0	87.0	1.0	3.01	Saprolite			
	95.0	96.0	1.0	0.88	Saprolite			
	113.0	114.0	1.0	0.52	Saprolite			
	118.0	119.0	1.0	0.61	Saprolite Saprolite			
	122.0	123.0	1.0	8.13				
DDDBS21-17	136.1	148.1	12.0	0.78	Saprock - Fresh rock			
	152.1	154.1	2.0	1.88	Fresh rock			
	169.2	174.2	5.0	0.62	Fresh rock Fresh rock			
	189.2	190.2	1.0	0.65				
DDDBS21-18	0.0	1.0	1.0	3.20	Overburden			
	129.8	131.8	2.0	1.45	Fresh rock			
	152.8	158.8	6.0	1.45	Fresh rock			
	198.8	199.8	1.0	0.63	Fresh rock			
DDDBS21-19	174.6	175.6	1.0	0.77	Saprolite			
	177.6	178.6	1.0	0.69	Saprolite			
	195.6	197.6	2.0	1.84	Saprock			
	210.6	211.6	1.0	0.82	Saprock			
	256.6	258.6	2.0	6.46	Saprock			
including	257.6	258.6	1.0	11.90	Saprock			

DDDBS21-20	101.8	104.8	3.0	0.57	Fresh rock
	107.8	108.8	1.0	0.93	Fresh rock
	122.8	124.8	2.0	1.15	Fresh rock
	127.8	128.8	1.0	0.53	Fresh rock
	129.8	130.8	1.0	0.89	Fresh rock
	137.8	138.8	1.0	0.65	Fresh rock
	152.8	169.8	17.0	1.03	Fresh rock
including	152.8	153.8	1.0	3.38	Fresh rock
including	161.8	162.8	1.0	3.08	Fresh rock
DDDBS21-21	274.6	275.6	1.0	0.55	Saprock
	278.6	281.6	3.0	0.75	Saprock
DDDBS21-22	3.6	11.6	8.0	0.44	Laterite
	17.6	18.6	1.0	0.60	Saprolite
	46.6	54.6	8.0	3.21	Saprolite
including	47.6	48.6	1.0	16.10	Saprolite
	62.6	63.6	1.0	0.84	Saprolite
DDDBS21-23	73.6	74.6	1.0	1.74	Saprolite
	113.6	115.6	2.0	0.82	Saprock
	141.6	142.6	1.0	1.94	Saprock
	145.6	152.6	7.0	1.80	Saprock
including	147.6	148.6	1.0	5.60	Saprock
	160.6	170.6	10.0	0.74	Saprock
	173.6	176.6	3.0	1.11	Saprock
	180.6	198.6	18.0	1.04	Saprock
including	195.6	196.6	1.0	3.02	Saprock
	204.6	212.6	8.0	2.24	Saprolite
including	210.6	211.6	1.0	5.26	Saprolite
	216.6	226.6	10.0	1.00	Saprock - Saprolite
including	217.6	218.6	1.0	3.32	Saprolite
DDDBS21-24	122.6	125.6	3.0	1.04	Saprolite
	132.6	133.6	1.0	0.75	Saprolite
	151.6	152.6	1.0	0.64	Saprolite
	175.6	177.6	2.0	0.96	Saprolite
	180.6	181.6	1.0	0.97	Saprolite
	189.6	191.6	2.0	0.92	Saprolite
	203.6	204.6	1.0	0.51	Saprolite
	211.6	214.6	3.0	0.54	Saprolite
DDDBS21-25	114.6	119.6	5.0	0.92	Saprock
	123.6	127.6	4.0	0.91	Saprock
	133.6	139.6	6.0	0.60	Saprock

	147.6	151.6	4.0	1.09	Saprock
	154.6	155.6	1.0	2.04	Saprock
	173.6	174.6	1.0	0.53	Saprock
DDDBS21-26	145.6	146.6	1.0	1.05	Saprolite
	149.6	150.6	1.0	1.81	Saprolite
	165.6	166.6	1.0	1.17	Saprolite
	176.6	177.6	1.0	1.97	Saprolite
	180.6	193.6	13.0	1.25	Saprolite
including	183.6	185.6	2.0	3.28	Saprolite
	198.6	203.6	5.0	0.75	Saprolite
including	198.6	199.6	1.0	1.73	Saprolite
	212.6	213.6	1.0	1.00	Saprolite
	218.6	221.6	3.0	2.26	Saprolite
	224.6	226.6	2.0	0.94	Saprolite
	241.6	246.6	5.0	1.39	Saprolite
	250.6	257.6	7.0	0.93	Saprolite
RCDBS21-009	73.0	74.0	1.0	0.84	Saprolite
	78.0	82.0	4.0	0.69	Saprolite
RCDBS21-010	73.0	74.0	1.0	0.65	Saprolite
RCDBS21-011	102.0	106.0	4.0	1.00	Saprolite
	111.0	115.0	4.0	0.61	Saprolite
	118.0	119.0	1.0	1.45	Saprolite
	148.0	149.0	1.0	0.68	Saprock
	152.0	153.0	1.0	1.15	Saprock
	159.0	161.0	2.0	0.52	Fresh rock
	164.0	168.0	4.0	2.22	Fresh rock
including	165.0	166.0	1.0	5.27	Fresh rock
RCDBS21-012	8.0	22.0	14.0	1.05	Saprolite
including	9.0	10.0	1.0	3.33	Saprolite
including	14.0	15.0	1.0	3.00	Saprolite
	27.0	57.0	30.0	1.21	Saprolite
including	39.0	42.0	3.0	3.38	Saprolite
	63.0	70.0	7.0	1.56	Saprolite
including	63.0	64.0	1.0	5.82	Saprolite
	73.0	80.0	7.0	0.53	Saprolite
	83.0	87.0	4.0	2.78	Saprolite
including	83.0	84.0	1.0	7.88	Saprolite
	100.0	103.0	3.0	0.90	Saprolite
	106.0	108.0	2.0	1.01	Saprolite
	111.0	115.0	4.0	1.65	Saprolite

	118.0	130.0	12.0	0.79	Saprolite
	133.0	134.0	1.0	0.80	Saprolite
	155.0	158.0	3.0	3.20	Fresh rock
RCDBS21-013	32.0	36.0	4.0	1.25	Saprolite
	39.0	43.0	4.0	1.02	Saprolite
	54.0	58.0	4.0	0.86	Saprolite
including	54.0	55.0	1.0	2.26	Saprolite
	65.0	66.0	1.0	0.58	Saprolite
	90.0	109.0	19.0	1.02	Saprolite
including	92.0	93.0	1.0	2.81	Saprolite
including	105.0	107.0	2.0	3.94	Saprolite
	113.0	117.0	4.0	2.32	Saprolite
including	114.0	115.0	1.0	5.75	Saprolite
	120.0	126.0	6.0	1.82	Saprolite
	141.0	142.0	1.0	0.57	Saprolite
RCDBS21-014	51.0	52.0	1.0	0.77	Saprolite
RCDBS21-015	86.0	88.0	2.0	6.23	Saprolite
including	86.0	87.0	1.0	11.90	Saprolite
	91.0	100.0	9.0	1.15	Saprolite
including	91.0	92.0	1.0	3.34	Saprolite
	105.0	107.0	2.0	1.05	Saprolite
	114.0	124.0	10.0	0.90	Saprolite
	137.0	138.0	1.0	0.56	Saprolite
	139.0	140.0	1.0	0.59	Saprolite
RCDBS21-016	16.0	19.0	3.0	17.66	Saprolite
including	16.0	18.0	2.0	26.00	Saprolite
	23.0	44.0	19.0	2.29	
including	39.0	41.0	2.0	10.47	Saprolite
	48.0	59.0	11.0	1.67	Saprolite
including	55.0	56.0	1.0	4.81	Saprolite
	74.0	76.0	2.0	14.33	Saprolite
including	74.0	75.0	1.0	28.00	Saprolite
RCDBS21-017	1.0	10.0	9.0	1.62	Mottled zone - Saprolite
	12.0	13.0	1.0	0.50	Saprolite
	16.0	17.0	1.0	0.64	Saprolite
	20.0	21.0	1.0	0.88	Saprolite
	26.0	38.0	12.0	1.22	Saprolite
including	34.0	35.0	1.0	4.05	Saprolite
	43.0	44.0	1.0	0.50	Saprolite
	48.0	49.0	1.0	1.39	Saprolite

	55.0	65.0	10.0	1.97	Saprolite
	92.0	93.0	1.0	0.59	Saprolite
	122.0	127.0	5.0	0.62	Fresh rock
RCDBS21-018	0.0	6.0	6.0	1.07	Laterite - Saprolite
	38.0	41.0	3.0	0.65	Saprolite
	61.0	62.0	1.0	3.24	Saprolite
	65.0	82.0	17.0	1.23	Saprolite
including	75.0	76.0	1.0	7.40	Saprolite
RCDBS21-019	22.0	24.0	2.0	0.79	Saprolite
	30.0	31.0	1.0	0.57	Saprolite
	37.0	38.0	1.0	0.74	Saprolite
	41.0	42.0	1.0	0.53	Saprolite
	50.0	71.0	21.0	0.91	Saprolite
including	70.0	71.0	1.0	2.23	Saprolite
	75.0	76.0	1.0	0.60	Saprolite
	80.0	85.0	5.0	2.09	Saprolite
including	81.0	82.0	1.0	5.72	Saprolite
	94.0	110.0	16.0	1.06	Saprolite
including	95.0	96.0	1.0	4.62	Saprolite
	114.0	115.0	1.0	1.97	Saprolite
	126.0	138.0	12.0	0.95	Fresh rock
	178.0	179.0	1.0	1.71	Fresh rock
RCDBS21-020	11.0	12.0	1.0	1.02	Laterite
	17.0	22.0	5.0	1.64	Saprolite
	31.0	32.0	1.0	2.54	Saprolite
	47.0	48.0	1.0	0.83	Saprolite
	52.0	62.0	10.0	0.69	Saprolite
	69.0	70.0	1.0	0.99	Saprolite
	98.0	99.0	1.0	0.60	Saprolite
	136.0	139.0	3.0	1.40	Saprolite
RCDBS21-021	2.0	14.0	12.0	1.72	Mottled zone - Saprolite
including	9.0	12.0	3.0	4.68	Saprolite
	27.0	28.0	1.0	0.54	Saprolite
	30.0	31.0	1.0	1.30	Saprolite
	35.0	36.0	1.0	0.53	Saprolite
	47.0	48.0	1.0	0.62	Saprolite
	59.0	60.0	1.0	1.13	Saprolite
	73.0	75.0	2.0	2.72	Fresh rock
RCDBS21-022	6.0	22.0	16.0	1.07	Saprolite
including	20.0	21.0	1.0	2.71	Saprolite

	26.0	45.0	19.0	2.49	Saprolite
including	35.0	41.0	6.0	5.20	Saprolite
	92.0	95.0	3.0	1.97	Saprolite
	107.0	109.0	2.0	0.67	Saprolite
RCDBS21-023	95.0	102.0	7.0	0.69	Saprock - Saprolite
	153.0	154.0	1.0	0.57	Fresh rock
	165.0	166.0	1.0	0.69	Fresh rock
	177.0	178.0	1.0	0.55	Fresh rock
RCDBS21-024	9.0	11.0	2.0	1.03	Saprolite
	16.0	18.0	2.0	1.68	Saprolite
	28.0	29.0	1.0	0.66	Saprolite
	31.0	32.0	1.0	0.76	Saprolite
	35.0	56.0	21.0	1.31	Saprolite
including	37.0	38.0	1.0	4.40	Saprolite
	65.0	81.0	16.0	0.79	Saprolite
including	80.0	81.0	1.0	3.14	Saprolite
	93.0	94.0	1.0	0.51	Saprolite
	104.0	105.0	1.0	0.53	Saprolite
	108.0	109.0	1.0	0.59	Saprolite
	114.0	119.0	5.0	1.53	Saprolite
including	117.0	119.0	2.0	2.94	Saprolite
	125.0	126.0	1.0	2.10	Saprolite
	135.0	140.0	5.0	0.97	Saprolite
	159.0	160.0	1.0	1.94	Saprock
RCDBS21-025	26.0	27.0	1.0	0.75	Saprolite
	30.0	31.0	1.0	2.25	Saprolite
	36.0	37.0	1.0	0.62	Saprolite
	41.0	42.0	1.0	0.72	Saprolite
	65.0	66.0	1.0	1.44	Saprolite
	73.0	74.0	1.0	0.51	Saprolite
	81.0	82.0	1.0	0.52	Saprolite
	84.0	85.0	1.0	0.81	Saprolite
	92.0	93.0	1.0	0.87	Saprolite
	101.0	102.0	1.0	0.51	Saprolite
	106.0	109.0	3.0	0.83	Saprolite
	112.0	113.0	1.0	0.55	Saprolite
	121.0	122.0	1.0	0.69	Saprolite
	128.0	129.0	1.0	0.66	Saprolite
	147.0	149.0	2.0	0.98	Saprolite
	159.0	160.0	1.0	0.85	Fresh rock

	163.0	169.0	6.0	1.48	Fresh rock
including	165.0	166.0	1.0	3.31	Fresh rock
ACDBS20-1075	10	12	2	0.88	Saprolite
	22	28	6	0.49	Saprolite
ACDBS20-1094	30	34	2	3.65	Saprolite
ACDBS20-1095	14	18	4	1.55	Saprolite
ACDBS21-1105	36	42	6	1.96	Saprolite
including	40.0	42.0	2	5.30	Saprolite
ACDBS21-1109	14	26	12	0.99	Saprolite
	38	40	2	1.07	Saprolite
ACDBS21-1110	26	36	10	0.59	Saprolite
	46	48	2	0.65	Saprolite
ACDBS21-1111	0	12	2	0.66	Saprolite
	26	28	2	1.27	Saprolite
	42	48	8	0.64	Saprolite
ACDBS21-1461	38	52	14	0.59	Saprolite
ACDBS21-1463	14	18	4	0.79	Saprolite
ACDBS21-1465	14	38	24	1.09	Saprolite
including	34	36	2	4.89	Saprolite
ACDBS21-1513	62	66	4	0.56	Saprolite
ACDBS21-1514	30	46	16	3.06	Saprolite
including	34	40	6	6.53	Saprolite
ACDBS21-1515	0	12	12	1.38	Saprolite
including	8.0	12.0	4	3.25	Saprolite

Table 2: Drillhole ID Kabaya Target (May 4th, 2021)

Hole ID	X Collar	Y Collar	Zcolar	Section	AZM	DIP
DDDBS20-015	265520	1389740	199	1389740	90	-50
DDDBS21-016	265280	1389550	204	1389550	90	-50
DDDBS21-017	265420	1389500	207	1389500	90	-50
DDDBS21-018	265451	1389601	204	1389600	90	-50
DDDBS21-019	265106	1389400	181	1389400	90	-50
DDDBS21-020	265471	1389650	204	1389650	90	-50
DDDBS21-021	265056	1389448	173	1389450	90	-50
DDDBS21-022	265498	1389803	189	1389800	90	-50
DDDBS21-023	265150	1389501	178	1389500	90	-50
DDDBS21-024	265130	1389550	174	1389550	90	-50
DDDBS21-025	265187	1389600	190	1389600	90	-50
DDDBS21-026	265117	1389449	176	1389450	90	-50
RCDBS21-009	265225	1389351	198	1389350	90	-50
RCDBS21-010	265200	1389300	155	1389300	90	-50
RCDBS21-011	265150	1389199	180	1389200	90	-50
RCDBS21-012	265253	1389501	188	1389500	90	-50
RCDBS21-013	265235	1389600	204	1389600	90	-50
RCDBS21-014	265400	1389393	226	1389400	270	-50
RCDBS21-015	265450	1389450	203	1389450	90	-50
RCDBS21-016	265550	1389600	202	1389600	90	-50
RCDBS21-017	265570	1389700	195	1389700	90	-50
RCDBS21-018	265629	1389750	191	1389750	270	-50
RCDBS21-019	265265	1389450	178	1389450	90	-50
RCDBS21-020	265355	1389650	197	1389650	270	-50
RCDBS21-021	265621	1389700	192	1389700	90	-50
RCDBS21-022	265570	1389650	204	1389650	90	-50
RCDBS21-023	265154	1389148	184	1389150	90	-50
RCDBS21-024	265286	1389585	204	1389600	90	-50
RCDBS21-025	265249	1389550	203	1389550	90	-50
ACDBS20-1075	265077	1390501	160	1390500	270	-50
ACDBS20-1094	265124	1390597	163	1390600	270	-50
ACDBS20-1095	265099	1390600	155	1390600	270	-50
ACDBS21-1105	265256	1390701	163	1390700	270	-50
ACDBS21-1109	265163	1390702	155	1390700	270	-50
ACDBS21-1110	265126	1390707	154	1390700	270	-50
ACDBS21-1111	265103	1390704	154	1390700	270	-50

ACDBS21-1461	265231	1390800	158	1390800	270	-50
ACDBS21-1463	265151	1390799	153	1390800	270	-50
ACDBS21-1465	265038	1390793	155	1390800	270	-50
ACDBS21-1513	265141	1388000	196	1388000	270	-50
ACDBS21-1514	265100	1388001	194	1388000	270	-50
ACDBS21-1515	265076	1388000	213	1388000	270	-50

Qualified Person (QP) and NI43-101 Disclosure

Greg Isenor, P. Geo., Executive Vice-Chairman for the Company, is the designated Qualified Person for this news release within the meaning of National Instrument 43-101 ("NI 43-101") and has reviewed and verified that the technical information contained herein is accurate and approves of the written disclosure of same.

About Roscan

Roscan Gold Corporation is a Canadian gold exploration company focused on the exploration and acquisition of gold properties in West Africa. The Company has assembled a significant land position of 100%-owned permits in an area of producing gold mines (including B2 Gold's Fekola Mine which lies in a contiguous property to the west of Kandiole), and major gold deposits, located both north and south of its Kandiole Project in West Mali.

For further information, please contact:

Dr. Andrew J. Ramcharan, P.Eng

Executive Vice President - Corporate Development

Tel: (416) 572-2295

Email: aramcharan@Roscan.ca

Greg Isenor, P.Geo

Executive Vice-Chairman Tel: (902) 902-221-2329 Email: gpisenor@Roscan.ca

Forward Looking Statements

This news release contains forward-looking information which is not comprised of historical facts. Forward-looking information is characterized by words such as "plan", "expect", "project", "intend", "believe", "anticipate", "estimate" and other similar words, or statements that certain events or conditions "may" or "will" occur. Forward-looking information involves risks, uncertainties and other factors that could cause actual events, results, and opportunities to differ materially from those expressed or implied by such forward-looking information. Factors that could cause actual results to differ materially from such forward-looking information include, but are not limited to, changes in the state of equity and debt markets, fluctuations in commodity prices, delays in obtaining required regulatory or governmental approvals, and other risks involved in the mineral exploration and development industry, including those risks set out in the Company's management's discussion and analysis as filed under the Company's profile at www.sedar.com. Forward-looking information in this news release is based on the opinions and assumptions of management considered reasonable as of the date hereof, including that all necessary governmental and regulatory approvals will be received as and when expected. Although the Company believes that the assumptions and factors used in preparing the forward-looking information in this news release are reasonable, undue reliance should not be placed on such information. The Company disclaims any intention or obligation to update or revise any forward-looking information, other than as required by applicable securities laws.

Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.